
Advanced Probability and Applications EPFL - Spring Semester 2023-2024

Solutions to Homework 2

Exercise 1.

a) 1. true, 2. true, 3. false, 4. true b) 5. false, 6. true, 7. false, 8. true.

Exercise 2.

a) Use B = A ∪ (B\A), where A and B\A are disjoint, as well as Ω = A ∪Ac and P(Ω) = 1.

b) Use A ∪B = A ∪ (B\(A ∩B)) where A and B\(A ∩B) are disjoint, as well as a).

c) Use ∪∞
n=1An = ∪∞

n=1Bn, where Bn = An\(A1 ∪ . . .∪An−1); the Bn are disjoint, so by axiom (ii)
and a),

P(∪∞
n=1An) = P(∪∞

n=1Bn) =
∞∑
n=1

P(Bn) ≤
∞∑
n=1

P(An)

d) P(∪n≥1An) = P(∪n≥1(An ∩Ac
n−1))

(∗)
=

∑∞
n=1 P(An ∩Ac

n−1) = limn→∞
∑n

i=1 P(Ai ∩Ac
i−1)

(∗∗)
= limn→∞ P(∪n

i=1(Ai ∩Ac
i−1)) = limn→∞ P(∪n

i=1Ai) = limn→∞ P(An), where (∗), (∗∗) follow from
the fact that the sets An ∩Ac

n−1 are disjoint.

e) Using parts a) and d): P(∩n≥1An) = 1−P((∩n≥1An)
c) = 1−P(∪n≥1A

c
n) = 1− limn→∞ P(Ac

n) =
limn→∞ P(An).

Exercise 3.*

a) First, note that the range of the random variable X is [0, 1]. Thus, the CDF FX(t) = 0 for t < 0
and FY (t) = 1 for t ≥ 1.

Now, for t ∈ [0, 1], we have:

FX(t) = µX((−∞, t]) = P({(ω1, ω2) ∈ [0, 1]2 : X(ω1, ω2) ≤ t})
= P({(ω1, ω2) ∈ [0, 1]2 : ω1ω2 ≤ t})

Now, one could just compute the probability by integrating the area under the curve ω1ω2 ≤ t that
lies within [0, 1]× [0, 1] as follows:

P({(ω1, ω2) ∈ [0, 1]2 : ω1ω2 ≤ t}) = t+

∫ 1

t

t

ω1
dω1

= t(1− ln t)

Therefore,

FX(t) =


0 if t < 0,

t(1− ln t) if t ∈ [0, 1]

1 if t > 1
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b) First, note that the range of the random variable Y is
[
− 1

2 ,
1
2

]
. Thus, the CDF FY (t) = 0 for

t < −1
2 and FY (t) = 1 for t ≥ 1

2 .

Now, for t ∈
[
− 1

2 ,
1
2

]
, we have:

FY (t) = µY ((−∞, t]) = P({(ω1, ω2) ∈ [0, 1]2 : Y (ω1, ω2) ≤ t})
= P({(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t})

Note that the area {(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t} represents different shapes in [0, 1]× [0, 1] for
positive and negative values of 2t. Thus, we divide our analysis into two cases:

Case 1: −1
2 < t ≤ 0:

The area {(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t} represents a right-angled triangle (∆1) is an element of
the sigma field F = B([0, 1]2). Thus, the probability measure P(∆1) is given by its area. Thus,

FY (t) = Area(∆1) =
1

2
(1 + 2t)(1 + 2t)

Case 2: 0 < t ≤ 1
2 :

The area {(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t} represents a pentagon (∆2) in this case which is again
an element of the sigma field F = B([0, 1]2). Thus, the probability measure P(∆2) is given by its
area which can be easily computed as:

FY (t) = Area(∆2) = 1− 1

2
(1− 2t)(1− 2t)

Thus, the CDF of the random variable Y is the following:

FY (t) =


0 if t ≤ −1

2 ,
1
2(1 + 2t)2 if −1

2 < t ≤ 0

1− 1
2(1− 2t)2 if 0 < t ≤ 1

2

1 if t > 1
2

Exercise 4.

a) We have

P({Yn ≤ t}) = 1− P({Yn > t}) = 1− P({min{X1, . . . , Xn} > t}) = 1− P(∩n
j=1{Xj > t})

= 1−
∏n

j=1 P({Xj > t}) = 1− P({X1 > t})n

where the last two equalities follow from the assumption that the X’s are i.i.d. Therefore,

P({Yn ≤ t}) = 1− (exp(−t))n = 1− exp(−nt)
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b) Under the assumptions made, n is large and t is such that nt ≪ 1, so using Taylor’s expansion
exp(−x) ≃ 1− x, we obtain

P({Yn ≤ t}) ≃ 1− (1− nt) = nt while P({X1 ≤ t}) = 1− exp(−t) ≃ t

and therefore P({Yn ≤ t}) ≃ nP({X1 ≤ t}).

c) We have similarly

P({Zn ≥ t}) = 1− P({Zn < t}) = 1− P({max{X1, . . . , Xn} < t}) = 1− P(∩n
j=1{Xj < t})

= 1−
n∏

j=1

P({Xj < t}) = 1− P({X1 < t})n = 1− (1− exp(−t))n

d) Under the assumptions made, n is large and t is such that n exp(−t) ≪ 1, so using again the
same Taylor expansion as above, we obtain

P({Zn ≥ t}) ≃ 1− (1− n exp(−t)) = n exp(−t) while P({X1 ≥ t}) = exp(−t)

and therefore P({Zn ≥ t}) ≃ nP({X1 ≥ t}).

Exercise 5.

a) Yes. Here, we need to check that ∀ B ∈ B(R), we have X−1(B) ∈ F . Specifically, check for
B = {0}, {−2}, {1}, {0, 1}, {0,−2}, {1,−2}.

b) No. Here, we have X−1(−1) = {a, b}, X−1(1) = {c}, X−1(2) = {d}. However, {c}, {d} ̸∈ A.
Thus, X is not a F−measurable random variable.

c) Let us begin by recalling that the cdf is a non-decreasing and a right-continuous function i.e.,
∀m ∈ R, we have:

lim
ϵ→0

F (m− ϵ) ≤ F (m) = lim
ϵ→0

F (m+ ϵ)

Now, defining m0 := sup{x ∈ R : F (x) < 1/2}. Then, F (m0) ≥ 1/2. How??. Assume, it’s not true
i.e., F (m0) < 1/2. Since, the cdf F is a right continuous function, it implies that ∃ m′

0 > m0 such
that F (m′

0) < 1/2. However, this violates our definition of m0. Thus, our assumption is wrong and
consequently F (m0) ≥ 1/2. Furthermore, limϵ→0 F (m0 − ϵ) ≤ 1/2. Hence, m0 is the (smallest)
median of X.

Let’s also define m1 := sup{x ∈ R : F (x) ≤ 1/2}. Then, F (m1) ≥ 1/2 as F is a non-decreasing
function. Furthermore, limϵ→0 F (m1 − ϵ) ≤ 1/2. Thus, m1 is the (largest) median of X.

Now, note that {x ∈ R : F (x) < 1/2} ⊆ {x ∈ R : F (x) ≤ 1/2}. Thus, m0 ≤ m1. We can now show
that the closed interval [m0,m1] contains the medians i.e., ∀ m ∈ [m0,m1], m is a median of X.
Since, m0 ≤ m ≤ m1, it’s not hard to see that 1/2 ≤ F (m0) ≤ F (m) ≤ F (m1). Furthermore, note
that ∀ϵ > 0, limϵ→0 F (m0 − ϵ) ≤ limϵ→0 F (m− ϵ) ≤ limϵ→0 F (m1 − ϵ) ≤ 1/2. Thus, we have that
∀m ∈ [m0,m1], limϵ→0 F (m− ϵ) ≤ 1

2 ≤ F (m).

The median of X is unique when the cdf of X is a strictly increasing function. In this case, the
closed interval [m0,m1] reduces to a singleton set.
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