Advanced Probability and Applications EPFL - Spring Semester 2023-2024
Solutions to Homework 2

Exercise 1.

a) 1. true, 2. true, 3. false, 4. true b) 5. false, 6. true, 7. false, 8. true.

Exercise 2.

a) Use B= AU (B\A), where A and B\ A are disjoint, as well as Q@ = AU A° and P(Q2) = 1.

b) Use AUB = AU (B\(AN B)) where A and B\(A N B) are disjoint, as well as a).

¢) Use U, A, = U, B, where B, = A,\(A1 U...UA,_1); the B, are disjoint, so by axiom (ii)

and a),

P(UpZiAn) = P(UpZ, Br) = ZP(Bn) < ZP(An)

n=1 n=1

d) P(UnzlAn) = P(Unzl(An N A%—l)) (;) 220:1 P(An N A%—l) = limp 00 Z?:l P(Ai N Azg—1)

) im0 P(UI (A3 0 AS ) = litmy 0 P(UL A;) = limy oo P(Ap), where (%), () follow from
the fact that the sets A, N AS_; are disjoint.

e) Using parts a) and d): P(Np>145,) =1 —=P((Ny>145)¢) = 1 =P(Up>14%) = 1 —limy, 00 P(AS) =
lim,, 00 P(4;,).

Exercise 3.*

a) First, note that the range of the random variable X is [0, 1]. Thus, the CDF Fx(t) =0 for t < 0
and Fy(t) =1 for ¢t > 1.

Now, for ¢ € [0, 1], we have:

Fx(t) = px((—00,1]) = P({(w1,w2) € [0,1]" : X (w1, w2) < t})
= P({(wy,ws) € [0,1]% : wiws < t})

Now, one could just compute the probability by integrating the area under the curve wiws <t that
lies within [0, 1] x [0,1] as follows:

1
t
P({(w1,wa) € [0,1) : wiwy < #}) = t+/ w “dw
!

=t(1 —Int)
Therefore,
0 if t <0,
Fx(t) = qt(1—1Int) ifte]0,1]
1 ift>1



b) First, note that the range of the random variable Y is {— 1, %} Thus, the CDF Fy (t) = 0 for
t<—%and Fy(t)=1fort> 1.

Now, for t € {— %, %}, we have:

Fy (t) = py (o0, 1]) = P({(w1,w2) € [0,1]% : YV (w1, wa) < t})
= P({(W1,WQ) € [0, 1]2 Twp —we < Qt})

Note that the area {(w1,ws) € [0,1]? : wy — wa < 2t} represents different shapes in [0, 1] x [0, 1] for
positive and negative values of 2t. Thus, we divide our analysis into two cases:

Case 1: —% <t<O0:

The area {(w1,ws) € [0,1]% : w1 — ws < 2t} represents a right-angled triangle (A1) is an element of
the sigma field F = B([0, 1]?). Thus, the probability measure P(A;) is given by its area. Thus,

1
Fy (t) = Area(A;) = 5(1 +2t)(1 + 2t)
Case 2: 0 <t <

The area {(wi,ws) € [0,1]? : w1 — wy < 2t} represents a pentagon (Az) in this case which is again
an element of the sigma field F = B([0,1]?). Thus, the probability measure P(Ay) is given by its
area which can be easily computed as:

B&ﬂ:AmMAﬁ:l—%ugaﬂﬂ—Qﬂ

Thus, the CDF of the random variable Y is the following:

0 ift < -3,
(1 + 2t)2 if -3 <t<0

FY(t): 1 2 . 1
1—-3(1—2t)* if0<t<y
1 ift >3

Exercise 4.

a) We have

P{Y, < t}) = 1 = P{Y, > t}) = 1 = B({min{ X1, ..., X} > t}) = 1 = B(""_ {X; > t})
=1-J[ PHX; > t}) =1-P({X1 > t})"

where the last two equalities follow from the assumption that the X’s are i.i.d. Therefore,

P({Yn <t}) =1 — (exp(—1))" = 1 — exp(—nt)



b) Under the assumptions made, n is large and ¢ is such that nt < 1, so using Taylor’s expansion
exp(—z) ~ 1 — x, we obtain

PH{Y, <t})~1—(1—nt)=nt while PH{X; <t})=1—exp(—t)~t

and therefore P({Y,, <t}) ~nP({X; <t}).

¢) We have similarly

P({Z, > 1}) = 1 =P({Z, < t}) = 1 = P({max{X1,..., Xn} < t}) = 1 — P("?_ {X; < t})
—1-J[PUX; <t}) = 1= PUX < t})" =1 — (1 —exp(—t))"
j=1

d) Under the assumptions made, n is large and t is such that nexp(—t) < 1, so using again the
same Taylor expansion as above, we obtain

P{Z,>1t}) ~1— (1 —nexp(—t)) =nexp(—t) while P({X; >t}) =exp(—t)

and therefore P({Z, > t}) ¥ nP({X; > t}).

Exercise 5.

a) Yes. Here, we need to check that V B € B(R), we have X !(B) € F. Specifically, check for
B ={0},{-2},{1},{0, 1}, {0, -2}, {1, —2}.

b) No. Here, we have X 1(—1) = {a,b}, X 1(1) = {c}, X~1(2) = {d}. However, {c},{d} ¢ A.
Thus, X is not a F—measurable random variable.

c) Let us begin by recalling that the cdf is a non-decreasing and a right-continuous function i.e.,
VYm € R, we have:
lim F(m —¢€) < F(m) = lir%F(m—i—e)

e—

e—0
Now, defining mg := sup{z € R: F(z) < 1/2}. Then, F(mp) > 1/2. How??. Assume, it’s not true
i.e., F(mp) < 1/2. Since, the cdf F' is a right continuous function, it implies that 3 m{, > mg such
that F(my) < 1/2. However, this violates our definition of mg. Thus, our assumption is wrong and
consequently F'(mg) > 1/2. Furthermore, lime o F'(mo —€) < 1/2. Hence, myg is the (smallest)
median of X.

Let’s also define m; := sup{z € R: F(z) < 1/2}. Then, F(m1) > 1/2 as F is a non-decreasing
function. Furthermore, lim¢_,o F'(m; — €) < 1/2. Thus, m; is the (largest) median of X.

Now, note that {z e R: F(z) < 1/2} C{z € R: F(x) < 1/2}. Thus, my < m;. We can now show
that the closed interval [mg, m;| contains the medians i.e., ¥V m € [mg, m1], m is a median of X.
Since, moy < m < my, it’s not hard to see that 1/2 < F(mg) < F(m) < F(m;y). Furthermore, note
that Ve > 0, lime_,0 F'(mg — €) < lim9 F(m —€) < lim9 F(m; —€) < 1/2. Thus, we have that
Ym € [mo, m1], im0 F(m —¢€) < % < F(m).

The median of X is unique when the cdf of X is a strictly increasing function. In this case, the
closed interval [mg, m;] reduces to a singleton set.



