Introduction to Quantum Information Processing COM 309 Week 1

Complex Numbers

Exercise 1

1. Give the real part, imaginary part, and conjugate of the following complex numbers:

$$z_1 = 3 + 2i$$
 $z_2 = i(1 + \sqrt{2}i)$ $z_3 = \frac{5}{i}$ $z_4 = \frac{i^4}{2} + 2i^3 - i^2 + i - 3$

2. Give the modulus and argument of the following complex numbers:

$$z_1 = 2i$$
 $z_2 = 1 + \sqrt{3}i$ $z_3 = -5$ $z_4 = a + ib$

3. Give the algebraic form (cartesian coordinates) of the following complex numbers:

$$z_1 = (2 - 3i)(1 + \sqrt{2}i)$$
 $z_2 = (\overline{1 + 3i})(6 - \sqrt{3}i)$ $z_3 = \frac{5 + i}{3 - i}$ $z_4 = (1 - i)^5$

4. Let $z_1 = 3 + 2i$, $z_2 = 1 - i$. Plot in the complex plane $z_1, z_2, z_3 = z_1 + z_2, z_4 = z_1 - \bar{z}_2, z_5 = \bar{z}_1 z_2$.

Exercise 2

1. Give the polar form (or exponential form) of the following complex numbers:

$$z_1 = 1 + e^{i\theta}$$
 $z_2 = 1 - e^{-i\theta}$ $z_3 = e^{i\theta} + e^{i\phi}$ $z_4 = \frac{1 + e^{i\theta}}{1 + e^{i\phi}}$

- 2. Solve the equation $z^n = 1$ and plot the solutions for n = 5 in the complex plane.
- 3. Solve the equation $z^2 = \frac{1+i}{\sqrt{2}}$ and give the solutions in algebraic form. Deduce the value of $\cos\left(\frac{\pi}{8}\right)$ and $\sin\left(\frac{\pi}{8}\right)$.

Exercise 3

Find the scalar product $\langle \mathbf{v}, \mathbf{w} \rangle$ of the following pairs of vectors in \mathbb{C}^d :

1.
$$d = 2$$
, $\mathbf{v} = (1 + i, 2 + 3i)$, $\mathbf{w} = (4 - 2i, 3 + i)$;

2.
$$d = 2$$
, $\mathbf{v} = (4 - 2i, 3 + i)$, $\mathbf{w} = (1 + i, 2 + 3i)$;

3.
$$d = 3$$
, $\mathbf{v} = (2 - i, 1, -3i)$, $\mathbf{w} = (4, -i, 2 + i)$;

4.
$$d = 3$$
, $\mathbf{v} = (1 + 2i, 2 - i, 3 + i)$, $\mathbf{w} = (1, 2i, 3 - i)$.

Exercise 4

Check whether the following vectors in \mathbb{C}^d form an orthonormal basis:

1.
$$d = 2$$
, $\mathbf{u}_1 = \begin{pmatrix} \frac{1}{2} \\ \frac{i}{2} \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} \frac{1}{2} \\ -\frac{i}{2} \end{pmatrix}$;

2.
$$d=2$$
, $\mathbf{u}_1 = \frac{1}{2} \begin{pmatrix} 1+i\\1-i \end{pmatrix}$, $\mathbf{u}_2 = \frac{1}{2} \begin{pmatrix} 1-i\\1+i \end{pmatrix}$;

3.
$$d = 3$$
, $\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{u}_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ i \\ 1 \end{pmatrix}$, $\mathbf{u}_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -i \\ 1 \end{pmatrix}$;

4.
$$d = 3$$
, $\mathbf{u}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix}$, $\mathbf{u}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1+i \\ 1-i \\ 1-i \end{pmatrix}$, $\mathbf{u}_3 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ -i \\ 2i \end{pmatrix}$.

Exercise 5

- 1. Prove that all eigenvalues $\lambda_1, \dots, \lambda_d$ of arbitrary Hermitian matrix $H \in \mathbb{C}^{n \times n}$ are real.
- 2. Prove also that the eigenvectors of distinct eigenvalues are orthogonal.
- 3. Deduce that we can always choose the set of eignevectors as an orthonormal basis v_1, \ldots, v_d .
- 4. Finally deduce that for a Hermitian matrix we have the decomposition

$$H = \sum_{i=1}^{d} \lambda_i v_i v_i^{\dagger}$$

Exercise 6

Show that the matrix $A = \begin{pmatrix} 3 & 1-i \\ 1+i & 4 \end{pmatrix} \in \mathbb{C}^{2\times 2}$ is Hermitian and find its eigenvalues and eigenvectors.

Exercise 7

Let U be an arbitrary unitary matrix in $\mathbb{C}^{n\times n}$.

- 1. Show that a unitary matrix preserves the scalar product: $(U\mathbf{w})^{\dagger}U\mathbf{z} = \mathbf{w}^{\dagger} \cdot \mathbf{z}$.
- 2. Show that a unitary matrix preserves the norm of a vector $\mathbf{z} \in \mathbb{C}^n$, $||U\mathbf{z}|| = ||\mathbf{z}||$.
- 3. Show that the lines of a unitary matrix form an orthonormal basis. Show that the columns also form an orthonormal basis.
- 4. Show that the modulus of any eigenvalue of U is 1.

Exercise 8

Show that matrix

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}, \theta \in \mathbb{R}$$

is unitary and find its eigenvalues and eigenvectors.