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Last name First name SCIPER Nr Points

Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf pXY (x, y).
Let a, b ∈ R be fixed.

(a) Prove that E[aX + bY ] = aE[X] + bE[Y ]. Do not assume independence.

(b) Prove that if X and Y are independent random variables, then E[X · Y ] = E[X] · E[Y ].

(c) Assume that X and Y are not independent. Find an example where E[X · Y ] ̸= E[X] · E[Y ], and
another example where E[X · Y ] = E[X] · E[Y ].

(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

Cov(X,Y ) := E [(X − E[X])(Y − E[Y ])] = 0. (1)

(e) Find an example where X and Y are uncorrelated but dependent.

(f) Assume that X and Y are uncorrelated and let σ2
X and σ2

Y be the variances of X and Y, respec-
tively. Find the variance of aX + bY and express it in terms of σ2

X , σ2
Y , a, b .

Hint: First show that Cov(X,Y ) = E[X · Y ]− E[X] · E[Y ] .

Solution 1. (a)

E[aX + bY ] =
∑
x

∑
y

(ax+ by)pXY (x, y)

=
∑
x

ax
∑
y

pXY (x, y) +
∑
y

by
∑
x

pXY (x, y)

= a
∑
x

x pX(x) + b
∑
y

y pY (y)

= aE[X] + bE[Y ].

(b) If X and Y are independent, we have pXY (x, y) = pX(x)pY (y) , then

E[X · Y ] =
∑
X

∑
Y

xypXY (x, y)

=
∑
X

∑
Y

xpX(x)ypY (y)

=
∑
X

xpX(x)
∑
Y

ypY (y)

= E[X] · E[Y ]
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(c) For the first example, suppose Pr(X = 0, Y = 1) = Pr(X = 1, Y = 0) = 1
2 , and Pr(X = 0, Y =

0) = Pr(X = 1, Y = 1) = 0 . X,Y are dependent, and we have E[X · Y ] = 0 while E[X]E[Y ] = 1
4

For the second example, suppose Pr(X = −1, Y = 0) = Pr(X = 0, Y = 1) = Pr(X = 1, Y = 0) = 1
3 .

X,Y are dependent. Obviously we have E[X ·Y ] = 0 , and furthermore E[X] = 0 , hence E[X]E[Y ] = 0 .

(d) If X and Y are independent, we have pXY (x, y) = pX(x)pY (y) , then

E[(X − E[X])(Y − E[Y ])] =
∑
x

∑
y

(x− E[X])(y − E[Y ]) pXY (x, y)

=
∑
x

∑
y

(x− E[X])(y − E[Y ]) pX(x)pY (y)

=
∑
x

(x− E[X]) pX(x)
∑
y

(y − E[Y ]) pY (y)

= (E[X]− E[X])(E[Y ]− E[Y ]) = 0.

Thus, X and Y are uncorrelated.

(e) One example where X and Y are uncorrelated but dependent is

PXY (x, y) =

{
1
3 if (x, y) ∈ {(−1, 0), (1, 0), (0, 1)},
0 otherwise.

First, it can be easily checked that E[X · Y ] = 0 = E[X] · E[Y ] (note that E[X] = 0 ). Second, X and
Y are dependent since PXY (1, 0) =

1
3 but PX(1)PY (0) =

1
3 × 2

3 .

(f) First, we have

Cov(X,Y ) = E [(X − E[X])(Y − E[Y ])]

= E [XY −XE[Y ]− E[X]Y + E[X]E[Y ]]

= E[X · Y ]− E[X] · E[Y ].

Thus, Cov(X,Y ) = 0 if and only if E[X · Y ] = E[X] · E[Y ] .

Then,

σ2
aX+bY = E[aX + bY − E[aX + bY ]]2

= E[(aX + bY )2]− (E[aX + bY ])2

= a2E[X2] + 2abE[X · Y ] + b2E[Y 2]− a2E[X]2 − 2abE[X]E[Y ]− b2E[Y ]2

= a2(E[X2]− E[X]2) + b2(E[Y 2]− E[Y ]2)

= a2σ2
X + b2σ2

Y .

We remark that since the independence of X and Y implies Cov(X,Y ) = 0 , we also have σ2
aX+bY =

a2σ2
X + b2σ2

Y if X and Y are independent.

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

pX(x) =
1√
2πσ2

e−
(x−m)2

2σ2 (2)

is called a Gaussian random variable.

(a) Explicitly calculate the mean E[X], the second moment E[X2], and the variance V ar[X] of the
random variable X.
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(b) Let us now consider events of the following kind:

Pr(X < α). (3)

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will
rewrite it in terms of the standard Q-function:

Q(x) =

∫ ∞

x

1√
2π

e−
u2

2 du (4)

Express Pr(X < α) in terms of the Q-function and the parameters m and σ2 of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have
bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds,
learning some very general and powerful tools along the way:

(c) Derive the Markov inequality, which says that for any non-negative random variable X and positive
a , we have

Pr(X ≥ a) ≤ E[X]

a
. (5)

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable
Z exceeds b is given by

Pr(Z ≥ b) ≤ E
[
es(Z−b)

]
, s ≥ 0. (6)

(e) Use the Chernoff bound to show that

Q(x) ≤ e−
x2

2 for x ≥ 0. (7)

Solution 2. (a) First,

E[X] =

∫ ∞

−∞
xpX(x) dx

=
1√
2πσ2

∫ ∞

−∞
xe−

(x−m)2

2σ2 dx

(∗)
=

1√
2πσ2

∫ ∞

−∞
ue−

u2

2σ2 du+m

∫ ∞

−∞

1√
2πσ2

e−
u2

2σ2 du (8)

(†)
= 0 +m

= m,

where (∗) follows by a change of variable u = x −m and (†) follows since the first integrand in (8) is
an odd function and the second integrand in (8) is a probability density function. We remark that the
integral ∫ ∞

−∞
e−x2

dx
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known as Gaussian integral, can be evaluated explicitly to be
√
π . Second,

E[X2] =

∫ ∞

−∞
x2pX(x) dx

=
1√
2πσ2

∫ ∞

−∞
x2e−

(x−m)2

2σ2 dx

(∗)
=

1√
2πσ2

∫ ∞

−∞
u2e−

u2

2σ2 du+
2m√
2πσ2

∫ ∞

−∞
ue−

u2

2σ2 du+m2

∫ ∞

−∞

1√
2πσ2

e−
u2

2σ2 du (9)

(†)
= σ2 + 0 +m2

= σ2 +m2,

where (∗) follows by a change of variable u = x −m and (†) follows from the same arguments in the
evaluation of E[X] and an integration by parts to the first integral in (9):

1√
2πσ2

∫ ∞

−∞
u2e−

u2

2σ2 du = − σ2

√
2πσ2

(
ue−

u2

2σ2

∣∣∣∞
−∞

−
∫ ∞

−∞
e−

u2

2σ2 du

)
= 0 + σ2.

Therefore,

V ar[X] = E[X − E[X]]2

= E[X2]− E[X]2

= σ2 +m2 −m2

= σ2.

(b)

P(X < α) =

∫ α

−∞

1√
2πσ2

e−
(x−m)2

2σ2 dx

(∗)
=

∫ α−m
σ

−∞

1√
2π

e−
u2

2 du

= 1−Q

(
α−m

σ

)
,

where (∗) follows by a change of variable u = x−m
σ .

(c)

E[X] =

∫ a

0

xpX(x) dx+

∫ ∞

a

xpX(x) dx

≥ 0 + a

∫ ∞

a

pX(x) dx

= aP(X ≥ a).

(d) Fix s ≥ 0 , then we have

P(Z ≥ b) ≤ P(s(Z − b) ≥ 0)

= P(es(Z−b) ≥ e0)

(∗)
≤ E

[
es(Z−b)

]
,

where (∗) follows from the Markov inequality.
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(e) Let X be a Gaussian random variable with mean zero and unit variance, then we have

Q(x) = P(X ≥ x)

(∗)
≤ E

[
es(X−x)

]
=

1√
2π

∫ ∞

−∞
es(u−x)e−

u2

2 du

= e−sx+ s2

2
1√
2π

∫ ∞

−∞
e−

(u−s)2

2 du

= e−sx+ s2

2 ,

where (∗) follows from the Chernoff bound. In order to get the tightest bound, we need to minimize
−sx+ s2/2 which gives s = x and then the desired bound is established.

Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

ϕ(s) := lnE[exp(sX)] = ln
∑
x

p(x) exp(sx)

of a real-valued random variable X taking values on a finite set, and showed that ϕ′(s) = E[Xs] where Xs

is a random variable taking the same values as X but with probabilities ps(x) := p(x) exp(sx) exp(−ϕ(s)) .

(a) Show that
ϕ′′(s) = Var(Xs) := E[X2

s ]− E[Xs]
2

and conclude that ϕ′′(s) ≥ 0 and the inequality is strict except when X is deterministic.

(b) Let xmin := min{x : p(x) > 0} and xmax := max{x : p(x) > 0} be the smallest and largest values
X takes. Show that

lim
s→−∞

ϕ′(s) = xmin, and lim
s→∞

ϕ′(s) = xmax.

Solution 3. (a) As ϕ(s) := lnE[exp(sX)] , we have

ϕ′(s) =
E[X exp(sX)]

E[exp(sX)]
= E[X exp(sX) exp(−ϕ(s))] = E[Xs] (10)

ϕ′′(s) =
E[X2 exp(sX)]

E[exp(sX)]
− E[X exp(sX)]E[X exp(sX)]

E[exp(sX)]2
(11)

The second term is E[Xs]
2 and the first term equals

∑
x x

2 exp(sx)/ exp(ϕ(s)) = E[X2
s ] . So ϕ′′(s) =

Var(Xs) . Moreover, Var(Xs) ≥ 0 with equality only when Xs is deterministic. But Xs is deterministic
only when X is.

(b) Observe that

ϕ′(s) =
E[X exp(sX)]

E[exp(sX)]
=

E[X exp(sX)] exp(−sxmax)

E[exp(sX)] exp(−sxmax)
(12)

=

∑
x p(x)x exp(−s(xmax − x))∑
x p(x) exp(−s(xmax − x))

(13)

In the sums above, as s → ∞ , all terms vanish except the ones for x = xmax . Hence we have

lim
s→∞

ϕ′(s) =
p(xmax)xmax

p(xmax)
= xmax (14)

Similarly, we can show that lims→−∞ ϕ′(s) = xmin .

5



Problem 4: Hoeffding’s Lemma

Prove Lemma 2.4 in the lecture notes. In other words, prove that if X is a zero-mean random vari-
able taking values in [a, b] then

E[eλX ] ≤ e
λ2

2 [(a−b)2/4].

Expressed differently, X is [(a− b)2/4] -subgaussian.

Hint: You can use the following steps to prove the lemma:

1. Let λ > 0 . Let X be a random variable such that a ≤ X ≤ b and E[X] = 0 . By considering the
convex function x → eλx, show that

E[eλX ] ≤ b

b− a
eλa − a

b− a
eλb. (15)

2. Let p = −a/(b− a) and h = λ(b− a) . Verify that the right-hand side of (15) equals eL(h) where

L(h) = −hp+ log(1− p+ peh).

3. By Taylor’s theorem, there exists ξ ∈ (0, h) such that

L(h) = L(0) + hL′(0) +
h2

2
L′′(ξ).

Show that L(h) ≤ h2/8 and hence E[eλX ] ≤ eλ
2(b−a)2/8 .

Solution 4. Since eλx is convex in x we have for all a ≤ x ≤ b ,

eλx ≤ b− x

b− a
eλa +

x− a

b− a
eλb.

If we take the expected value of this wrt X and recall that E[X] = 0 then it follows that

E[eλX ] ≤ b

b− a
eλa − a

b− a
eλb.

Consider the right-hand side. Note that we must have a < 0 and b > 0 since E[X] = 0 . Following the
hint further, consider now

L(h) = L(0) + hL′(0) +
h2

2
L′′(ξ).

First we have L(0) = 0. Next,

L′(h) = −p+
peh

1− p+ peh
,

hence,

L′(h = 0) = 0.

Finally,

L′′(ξ) =
peξ(1− p+ peξ)− p2e2ξ

(1− p+ peξ)2
=

peξ(1− p)

(1− p+ peξ)2
.
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It thus remains to show that this expression is bounded by 1/4 for all 0 ≤ ξ ≤ h. Thus, we can define
a = peξ and b = 1− p, with which we can write

L′′(ξ) =
peξ(1− p)

(1− p+ peξ)2
=

ab

(a+ b)2
.

and use the inequality ab
(a+b)2 ≤ 1

4 ,∀a, b ∈ R to conclude.

An alternative way to solve this problem could be define ϕ(λ) = lnE[eλX ] .

ϕ′(λ) =
d

dλ
lnE[eλX ] =

E[XeλX ]

E[eλX ]

So ϕ(0) = 0
1 = 0 .

ϕ′′(λ) =
d

dλ
ϕ′(λ) =

d

dλ

E[XeλX ]

E[eλX ]
=

E[X2eλX ]E[eλX ]− E[XeλX ]E[XeλX ]

E[eλX ]2

For λ = 0 , we have

ϕ′′(0) = E[X2]− E[X]2 = Var(X)

Also, we have ϕ(λ) ≤ ϕ(0) + ϕ′(0)λ + ϕ′′(0)λ
2

2 = λ2

2 Var(X) As X is random variable taking values in

[a, b] . The largest variance is achieved when Pr{X = a} = b
b−a Pr{X = b} = −a

b−a .

Var(X) ≤ (b− a)2

4
(16)

Therefore we have

E[eλX ] ≤ e
λ2

2
(b−a)2

4

X is [(b− a)2/4] -subgaussian.

Problem 5: Expected Maximum of Subgaussians

Let {Xi}ni=1 be a collection of n σ2 -subgaussian random variables, not necessarily independent of

each other. Let Y = maxi∈{1,2,··· ,n} Xi. Prove that E[Y ] ≤
√
2σ2 log n. Hint: Recall that by Jensen,

eλE[X] ≤ E[eλX ].

Solution 5. Consider the MGF of Y , we have the following relations for all λ ≥ 0

E[eλY ] = E[exp(λ max
i∈{1,2,...,n}

Xi)] ≤ E[
∑

i∈{1,2,...,n}

eλXi ].

Note that by the linearity of expectation (this does not require independence) and the assumptions that
{Xi}ni=1 are σ2 -subgaussian random variables, we have

E[eλY ] ≤ neλ
2σ2/2.

Using the hint, we have

eλE[Y ] ≤ eλ
2σ2/2+logn,

which implies that

E[Y ] ≤ λ
σ2

2
+

1

λ
log n.

Optimizing over λ , we have the optimal λ∗ =
√

2 logn
σ2 , which gives us the desired inequality.
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