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Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf pxy (z,y).

Let a,b € R be fixed.

(a) Prove that E[aX + bY] = aE[X] + DE[Y]. Do not assume independence.

(b) Prove that if X and Y are independent random variables, then E[X - Y] = E[X] - E[Y].
(c) Assume that X and Y are not independent. Find an example where E[X - Y] # E[X] - E[Y], and

another example where E[X - Y] = E[X] - E[Y].
(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

Cov(X,Y) :=E[(X — E[X])(Y — E[Y])] = 0.

(e) Find an example where X and Y are uncorrelated but dependent.

(1)

(f) Assume that X and Y are uncorrelated and let 0% and o2 be the variances of X and Y, respec-

tively. Find the variance of aX 4 bY and express it in terms of O'go 032,7 a,b.
Hint: First show that Cov(X,Y) =E[X - Y] — E[X] - E[Y].

Solution 1. (a)

ElaX +bY] = > (az+by)pxy(z,y)

= Z(ME pry(l’,y) + Zby ZPXY($73/)

= a) apx(a)+b> ypy(y)

= aE[X] +bE[Y].

(b) If X and Y are independent, we have pxy (z,y) = px(z)py (y), then

S aypxy(z,y)
X Y

Z Z zpx (2)ypy (y)
X Y

> apx (@)Y upy(y)
X Y

E[X - Y]

E[X]-E[Y]



(c) For the first example, suppose Pr(X =0,Y =1)=Pr(X =1,Y =0) = 1, and Pr(X =0,Y
0)=Pr(X=1,Y=1)=0. X,Y are dependent, and we have E[X Y] =0 while E[X|E[Y] =

For the second example, suppose Pr(X = -1,Y =0)=Pr(X =0,Y =1)=Pr(X =1,Y = :.
X,Y are dependent. Obviously we have E[X - Y] =0, and furthermore E[X] = 0, hence E[X]E[Y] =0.

(d)If X and Y are independent, we have pxy(z,y) = px(z)py (y), then
E[(X —EX]D(Y —E[Y]] = > > (¢ —EXD(y—EY])pxy(z,y)
= 3 (@ - EIX])(y - EIY]) px(2)py (9)

Thus, X and Y are uncorrelated.
(e) One example where X and Y are uncorrelated but dependent is

% if (:Cay) € {(7130)7(170)3(071)}7
0 otherwise.

ny(l',y) = {

First, it can be easily checked that E[X - Y] =0 = E[X] - E[Y] (note that E[X] =0). Second, X and
Y are dependent since Pxy(1,0) = £ but Px(1)Py(0) =

(f) First, we have

12
3 X3

Cov(X,Y) = E[(X—E[X])(Y —E[Y])
= IE[XY XE[Y] -
E[X - Y] - E[X]-E[Y].

Thus, Cov(X,Y) =0 if and only if E[X - Y] =E[X]-E[Y].
Then,
oixipy = ElaX +bY —E[aX +bY])?

= E[(aX +bY)?] — (E[aX +bY])?
= @®E[X?] + 2abE[X - Y] + V’E[Y?] — ’E[X]? — 2abE[X|E[Y] — b’E[Y]?

= o’ (EX?] -E[X]*) + 0*(E[Y?] - E[Y]?)

a’o% + bo?.

We remark that since the independence of X and Y implies Cov(X,Y) = 0, we also have 03 Xty =
a’0% +b%c% if X and Y are independent.

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

1 _(@=m)?
pX(x) = me 202 (2)

is called a Gaussian random variable.

(a) Explicitly calculate the mean E[X], the second moment E[X?], and the variance Var[X] of the
random variable X.



(b) Let us now consider events of the following kind:
Pr(X < a). (3)

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will
rewrite it in terms of the standard Q-function:

e )

Express Pr(X < a) in terms of the Q-function and the parameters m and o2 of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have
bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds,
learning some very general and powerful tools along the way:

(c¢) Derive the Markov inequality, which says that for any non-negative random variable X and positive
a, we have

E[X]

Pr(X >a) <
a

(5)

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable
Z exceeds b is given by

Pr(Z >b) <E[eZD],  s>o0. (6)

Solution 2. (a) First,

E[X] = /OO xpx (z) dx

° (@—m)?
/ xre 202 dx
V2ro? J_o

o0 u2 o0 1 u2
W/ w = dutm [ Vgt ®)

—
*

—
—_

—
—

[
3

where (x) follows by a change of variable w = x —m and () follows since the first integrand in (8) is
an odd function and the second integrand in (8) is a probability density function. We remark that the
integral



known as Gaussian integral, can be evaluated explicitly to be /7. Second,

E[X?] = /OO ?*px (z) dx

— 00

(.t nz)

dx

2 o0
u’e 2a2du—|—7m ue 2a2du+m
vV 27r02 V2ro? J_w

a2 4+ 0+ m?

o? +m2,

e
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*
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where (x) follows by a change of variable u = x —m and (f) follows from the same arguments in the
evaluation of E[X] and an integration by parts to the first integral in (9):

0_2 w2 |® S w2
ule” 202 du = ———= | ue 202 — e 202 du
V2mro? V2mo? —o0 oo

= 0402
Therefore,
Var[X] = E[X -E[X]]?
= E[X?] - E[X]?
= 24+ m?—m2
(b)
o ]_ T — m 2
PX <a) = / e T dr
—o0 V2702

where (x) follows by a change of variable u = £

(c)

a e’}
E[X] = /xpx(m)dx—i—/ rpx () dv
0 a
> 0+a/ px(x) dz
= aP(X >a).
(d) Fix s > 0, then we have
P(Z>b) < Bs(Z-8)>0)

]P;(es(Zfb) > 60)

E[es(Z—b)]’

,\
INx |

where (%) follows from the Markov inequality.



(e) Let X be a Gaussian random variable with mean zero and unit variance, then we have
Q) = PX=1)

E |:es(X7:r)j|

,\
INx

(u—2) ,— %
e\ eT T du

1
V2T /
_ 7Sz+s _(u=s)2 s>2 du
=

= 675934’7’

where (%) follows from the Chernoff bound. In order to get the tightest bound, we need to minimize
—sx + s2/2 which gives s = x and then the desired bound is established.

Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

#(s) :== InE[exp(sX)] anp x) exp(sx)

of a real-valued random variable X taking values on a finite set, and showed that ¢'(s) = E[X] where X
is a random variable taking the same values as X but with probabilities ps(z) := p(z) exp(sz) exp(—d(s)).

(a) Show that
¢"(s) = Var(X;) := E[X7] — E[X,]?
and conclude that ¢”(s) > 0 and the inequality is strict except when X is deterministic.

(b) Let @pin := min{z : p(z) > 0} and zpax := max{z : p(z) > 0} be the smallest and largest values
X takes. Show that

lim ¢'(s) = Tmin, and lim ¢'(s) = Tmax.
S§——00 5—00

Solution 3. (a) As ¢(s) := InE[exp(sX)], we have

(5) = et = BLX exp(sX) xp(~0(s))] = BLX.] (10)
o'(s) = E[X2exp(sX)] E[X exp(sX)|E[X exp(sX)] (1)

Elexp(sX)] Elexp(sX)]?

The second term is E[X,]? and the first term equals Y 22 exp(sz)/exp(¢(s)) = E[X2]. So ¢"(s) =
Var(X;). Moreover, Var(X;) > 0 with equality only when X is deterministic. But X is deterministic
only when X is.

(b) Observe that
E[X exp(sX)] E[X exp(sX)]exp(—5Tmax)

' = 12
#(s) Elexp(sX)] Elexp(sX)] exp(—$Tmaz) (12)
Z:c p(iﬂ)fﬂ exp(fs(xmaz - x))
(13)
Zm p(x) eXp(fs(zmax - I))
In the sums above, as s — oo, all terms vanish except the ones for & = .., . Hence we have
hm (bl(S) = pi(xmaw)xmaw = Tmazx (14)

§—0 p(mmam)

Similarly, we can show that lims_,_ o ¢'(8) = Tpin -



Problem 4: Hoeffding’s Lemma

Prove Lemma 2.4 in the lecture notes. In other words, prove that if X is a zero-mean random vari-
able taking values in [a,b] then

B[] < o l(a=b)?/4]

Expressed differently, X is [(a — b)?/4]-subgaussian.

Hint: You can use the following steps to prove the lemma:

1. Let A > 0. Let X be a random variable such that « < X <b and E[X] = 0. By considering the
convex function z — e**, show that

b a
AX] < Xa _ b 1
Ele ]_b—ae ot (15)

2. Let p= —a/(b—a) and h = A\(b— a). Verify that the right-hand side of (15) equals e“(") where
L(h) = —hp +log(1 — p + pe™).
3. By Taylor’s theorem, there exists £ € (0,h) such that
h2
L(h) = L(0) + hL'(0) + ?L”(f).

Show that L(h) < h?/8 and hence E[e*¥] < N (b-a)*/8

Az

Solution 4. Since e** is convex in x we have for all a <z < b,

b—x r—a
e)\z S eAa €>\b.
b—a b—a

If we take the expected value of this wrt X and recall that E[X] =0 then it follows that

E[e*X] < b R L)

“b—a b—a

Consider the right-hand side. Note that we must have a < 0 and b > 0 since E[X] = 0. Following the
hint further, consider now

L(h) = L(0) + hL'(0) + h;L”(g).

First we have L(0) = 0. Next,

h
L) =—pt 7=
hence,
L'(h=0)=0
Finally,

_pet(L—p+pet) —pPe*¢  pet(1—p)

(1 —p+pet)? (1—p+pef)?

L"(€)



It thus remains to show that this expression is bounded by 1/4 for all 0 < & < h. Thus, we can define
a=pes and b=1—p, with which we can write

pet(l—p) _  ab

L&) = (1—p+ pef)? - (a+0b)2

and use the inequality —2 <

a+b)2 Va,b € R to conclude.

1
1
An alternative way to solve this problem could be define ¢()\) = InE[e*¥].

e X
¢/(>\) = %IHE[G)\X] = EI[;EZXX}]

” d |, d E[Xer]  E[XZ2eMN|E[e*M] — E[XeAMNE[X e
51 = g = L EXC) LB SBIX BN

For A =0, we have
¢"(0) = E[X?] - E[X]* = Var(X)

Also, we have ¢(A) < ¢(0) + ¢'(0)A + gb”(O)% = % Var(X) As X is random variable taking values in

[a,b] . The largest variance is achieved when Pr{X = a} = ﬁ Pr{X =b} = =2~

(b—a)?
1

Var(X) < (16)

Therefore we have

El] < o 2

X is [(b— a)?/4]-subgaussian.

Problem 5: Expected Maximum of Subgaussians

Let {X;}", be a collection of n o?-subgaussian random variables, not necessarily independent of
each other. Let Y = max;c(12,... ny Xi. Prove that E[Y] < y/202logn. Hint: Recall that by Jensen,
e)\]E[X] < E[eAX].

Solution 5. Consider the MGF of Y, we have the following relations for all A > 0

E[e*] = Elexp(A max X;)]<E M.
) =Bl x| XISEL 3 O

Note that by the linearity of expectation (this does not require independence) and the assumptions that
{X;}*_, are o?-subgaussian random variables, we have

E[exy] < neo?/2.

Using the hint, we have
AEY] < €A202/2+logn

W thh llllplles t;llat
2 )\ "

2logn
o2

Optimizing over A, we have the optimal \* = , which gives us the desired inequality.



