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CHAPTER 1

TOPOLOGICAL AND SMOOTH MANIFOLDS

1.1 Topological Manifolds

Definition 1.1. A topological manifold of dimension n (or topological n-manifold) is a
topological space M with the following properties:

• M is a Hausdorff space: for each pair of distinct points p, q ∈ M there are disjoint
open sets U, V ⊆M such that p ∈ U and q ∈ V .

• M is second-countable: there is a countable basis for the topology of M .

• M is locally Euclidean of dimension n: each point of M has a neighborhood which
is homeomorphic to an open set of Rn; that is, for each p ∈M we can find

� an open subset U ⊆M containing p,

� an open subset Û ⊆ Rn, and

� a homeomorphism φ : U → Û .

Recall : Let X and Y be topological spaces. A continuous bijective map F : X → Y with
continuous inverse is called a homeomorphism. If there exists a homeomorphism from
X to Y , then we say that X and Y are homeomorphic.

Comments:

(1) Every topological manifold has, by definition, a specific, well-defined dimension. Thus,
we do not consider spaces of mixed dimension, such as the disjoint union of a plane
and a line, to be manifolds at all. It can be shown (using de Rham cohomology or
singular homology) that the dimension of a (non-empty) topological manifold is in fact a
topological invariant: A non-empty topological n-manifold cannot be homeomorphic to a
topological m-manifold unless n = m.

(2) The three conditions in Definition 1.1 ensure that topological manifolds behave in the
ways we expect from our experience with Euclidean spaces. For example, in a Hausdorff
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2 Chapter 1. Topological and Smooth Manifolds

space, finite subsets are closed and limits of convergent sequences are unique. The mo-
tivation for second-countability is less evident, but stems from the existence of so-called
partitions of unity; see Section 2.2.

(3) There are also examples of topological spaces which are not topological manifolds;
see Exercise Sheet 1. For example:

� The line with two origins is locally Euclidean and second-countable, but not Haus-
dorff.

� A disjoint union of uncountably many copies of R is locally Euclidean and Haus-
dorff, but not second-countable.

Definition 1.2. Let M be a topological n-manifold. A coordinate chart on M is a pair
(U,φ), where U is an open subset of M and φ : U → Û is a homeomorphism from U to

an open subset Û = φ(U) ⊆ Rn. The set U is called a coordinate domain, or a coordinate
neighborhood of each of its points. If, in addition, φ(U) is an open ball in Rn, then U is
called a coordinate ball ; if φ(U) is an open cube in Rn, then U is called a coordinate cube.
The map φ called a (local) coordinate map and its component functions (x1, x2, . . . , xn),
defined by φ(p) =

(
x1(p), x2(p), . . . , xn(p)

)
, are called local coordinates on U .

Figure 1.1: A coordinate chart

By definition of a topological manifold, each point p ∈ M is contained in the domain
of some chart (U,φ). If φ(p) = 0, then we say that the chart is centered at p. If (U,φ)
is any chart whose domain contains p, it is easy to obtain a new chart centered at p by
subtracting the constant vector φ(p).

Example 1.3.

(0) The basic example of a topological n-manifold is Rn itself. It is Hausdorff, because it
is a metric space, and it is second-countable, because the collection of all open balls with
rational centers and rational radii is a countable basis for the topology.

Moreover, every open subset of a topological n-manifold is itself a topological n-
manifold (with the subspace topology), because the Hausdorff and second-countability
properties are inherited by subspaces.

(1) Graphs of continuous functions : Let U ⊆ Rn be an open subset and let f : U → Rk

be a continuous function. The graph of f is the subset

Γ(f) :=
{
(x, y) ∈ Rn × Rk | x ∈ U, y = f(x)

}
⊆ Rn × Rk

with the subspace topology. Let π1 : Rn×Rk → Rn be the projection onto the first factor
and let φ : Γ(f) → U be the restriction of π1 to Γ(f):

φ(x, y) = x, (x, y) ∈ Γ(f).
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Since φ is the restriction of a continuous map, it is continuous; and it is homeomorphism,
because it has a continuous inverse given by φ−1(x) =

(
x, f(x)

)
. Thus, Γ(f) is a topo-

logical manifold of dimension n. In fact, Γ(f) is homeomorphic to U itself, and
(
Γ(f), φ

)
is a global coordinate chart, called graph coordinates.

The same observation applies to any subset of Rn+k defined by setting any k of the
coordinates (not necessarily the last k) equal to some continuous function of the other n,
which are restricted to lie in an open subset of Rn. (This observation will be used in (2)
below for k = 1.)

(2) Spheres : For each n ∈ N, the unit n-sphere is the subset

Sn :=
{
x ∈ Rn+1

∣∣ |x| = 1
}
⊆ Rn+1 .

It is Hausdorff and second-countable, because it is a subspace of Rn+1. To show that it is
locally Euclidean, for each i ∈ {1, . . . , n+ 1} consider the sets

U+
i :=

{
(x1, . . . , xn+1) ∈ Rn+1 | xi > 0

}
and

U−
i :=

{
(x1, . . . , xn+1) ∈ Rn+1 | xi < 0

}
.

Consider also the (open) unit ball of dimension n

Bn :=
{
x ∈ Rn

∣∣ |x| < 1
}

and the continuous function

f : Bn → R, u 7→
√

1− |u|2 .

Then for each i ∈ {1, . . . , n+ 1} it is easy to check that U+
i ∩ Sn is the graph of the

function
xi = f(x1, . . . , x̂i↰

omitted

, . . . , xn+1)

and that U−
i ∩ Sn is the graph of the function

xi = −f(x1, . . . , x̂i↰

omitted

, . . . , xn+1) .

Thus, each subset U±
i ∩ Sn is locally Euclidean of dimension n, see (1) above, and the

maps

φ±
i : U

±
i ∩ Sn → Bn

(x1, . . . , xn+1) 7→ (x1, . . . , x̂i, . . . , xn+1)

are graph coordinates for Sn. Since each point of Sn is in the domain of at least one of
these 2n+ 2 charts (see Figure 1.2), we conclude that Sn is a topological n-manifold.

(3) Projective spaces : see Appendix A.

We will encounter many more examples of topological manifolds later in the course
and in the exercise sheets as well.
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Figure 1.2: Charts for Sn

1.2 Smooth Manifolds

⇝ Topological manifolds are:

� suitable for the study of topological properties (e.g. compactness, connected-
ness, etc)

� not suitable for doing calculus: being “differentiable” is not an invariant un-
der homeomorphisms (in other words, it is not a topological property). For
instance, the map

φ : R2 → R2, φ(u, v) 7→
(

3
√
u, 3

√
v
)

is a homeomorphism, the map

f : R2 → R, f(x, y) 7→ x

is differentiable, but the composite map (f ◦φ)(u, v) = 3
√
u is not differentiable

at (0, 0).

⇝ To make sense of derivatives of maps between manifolds, we need to introduce a new
kind of manifold. It will be a topological manifold with some extra structure (in
addition to its topology), which will allow us to decide which maps are “smooth”.

⇝ Plausible definition of “smoothness” of a function on M : f : M → R smooth if
f ◦φ−1 : Û ⊆ Rn → R smooth (in the usual sense), which makes sense if it does not
depend on the choice of coordinate chart (U,φ). To guarantee this independence,
we will restrict our attention to “smooth charts”.

Definition 1.4. Let M be a topological manifold. If (U,φ) and (V, ψ) are two charts
such that U ∩ V ̸= ∅, then the composite map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is called
the transition map from φ to ψ (see Figure 1.3) and is clearly a homeomorphism. Two
charts (U,φ) and (V, ψ) are said to be smoothly compatible if either U ∩ V = ∅ or the
transition map ψ◦φ−1 is diffeomorphism (i.e., smooth and bijective with smooth inverse).
Since φ(U ∩ V ) and ψ(U ∩ V ) are open subsets of Rn, smoothness of this map is to be
interpreted in the ordinary sense of having continuous partial derivatives of all orders
(C∞).

An atlas for M is a collection of charts whose domains cover M . An atlas A is called
a smooth atlas if any two charts in A are smoothly compatible. Finally, a smooth atlas A
on M is called maximal (or complete) if it is not properly contained in any larger smooth
atlas. This just means that any chart which is smoothly compatible with every chart in
A is already in A.

Remark 1.5. To show that an atlas is smooth, we need only verify that each transition
map ψ ◦ φ−1 is smooth whenever (U,φ) and (V, ψ) are charts in A; once we have proved
this, it follows that ψ ◦φ−1 is a diffeomorphism because its inverse φ ◦ψ−1 = (ψ ◦φ−1)−1

is one of the transition maps we have already shown to be smooth. Alternatively, given
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two particular charts (U,φ) and (V, ψ), it is often easier to show that they are smoothly
compatible by verifying that ψ ◦ φ−1 is smooth with non-singular Jacobian at each point
of its domain, since then the Inverse Function Theorem = [Lee13, Theorem C.34] implies
that ψ ◦ φ−1 is a diffeomorphism, see [Lee13, Corollary C.36].

φ

ψ

ψ ◦ φ−1

φ(U)
ψ(V )

U

V

M

Rn Rn

Figure 1.3: A transition map

Comment: Our plan (see Chapter 2) is to define a “smooth structure” on M by giving
it a smooth atlas, and to define a function f : M → R to be smooth if and only if f ◦φ−1

is smooth in the sense of ordinary calculus for each coordinate chart (U,φ) in this atlas.
There is one minor technical problem with this approach (which led to the definition
of a maximal smooth atlas): in general, there will be many possible atlantes that give
the “same” smooth structure, in that they all determine the same collection of smooth
functions on M . For example, consider the following pair of smooth atlantes on Rn:

A1 :=
{
(Rn, IdRn)},

A2 :=
{
(B1(x), IdB1(x)) | x ∈ Rn}.

Although these are different smooth atlantes, clearly a function f : Rn → R is smooth
with respect to either atlas if and only if it is smooth in the sense of ordinary calculus.

We can now define the main concept of this chapter.

Definition 1.6. LetM be a topological manifold. A smooth structure onM is a maximal
smooth atlas. A smooth manifold is a pair (M,A), where M is a topological manifold
and A is a smooth structure on M .

Remark 1.7. A smooth structure is an additional piece of data that must be added to
a topological manifold before we are entitled to talk about a “smooth manifold”. Note
that a given topological manifold may have many smooth structures (in fact, if it has one,
then it has infinitely many, see [Lee13, Problem 1.6]), but it may also admit no smooth
structures at all.
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It is generally not convenient to define a smooth structure by explicitly describing a
maximal smooth atlas, because such an atlas contains very many charts. The next result
shows that we need only specify some smooth atlas.

Proposition 1.8. Let M be a topological manifold.

(a) Every smooth atlas A for M is contained in a unique maximal smooth atlas, called
the smooth structure determined by A.

(b) Two smooth atlantes for M determine the same smooth structure if and only if their
union is a smooth atlas.

Proof.

(a) Given a smooth atlas A on M , set

A :=
{
(U,φ) chart for M | ∀(V, ψ) ∈ A : (U,φ) and (V, ψ) are smoothly compatible

}
.

By definition of a smooth atlas we have A ⊆ A. Now, let A′ be a smooth atlas onM such
that A ⊆ A′ and take (U ′, φ′) ∈ A′. Since it holds that A ⊆ A′, we infer that (U ′, φ′) is
smoothly compatible with every chart (U,φ) ∈ A (by virtue of A′ being a smooth atlas).
Hence, (U ′, φ′) ∈ A, which implies that A = A′; in particular, A is a smooth atlas on M .
As A′ was arbitrary, we also conclude that A is maximal.

It remains to show that A the unique maximal smooth atlas containing A. So let
A′ be a maximal smooth atlas containing A. In particular, any chart in A′ is smoothly
compatible with any chart in A, and thus A′ ⊆ A. By maximality, we conclude that
A′ = A, and thus we obtain the uniqueness.

(b) Assume first that two smooth atlantes A1 and A2 for M determine the same smooth
structure, that is, both A1 and A2 are contained in the same (unique) maximal smooth
atlas for M . Then every chart (U,φ) ∈ A1 is smoothly compatible with every chart
(V, ψ) ∈ A2, so the union A1 ∪A2 is a smooth atlas for M .

Conversely, assume that the union A1 ∪A2 of two smooth atlantes A1 and A2 for M
is also a smooth atlas for M . Then every chart (U,φ) ∈ A1 is smoothly compatible with
every chart (V, ψ) ∈ A2. If Ā1 (resp. Ā2) is the smooth structure on M determined by
A1 (resp. A2), then by the construction in (a) we infer that A1 ⊆ Ā2 and A2 ⊆ Ā1, and
hence Ā1 = Ā2 due to the uniqueness in (a).

For example, if a topological manifold M can be covered by a single chart, then
the smooth compatibility condition is trivially satisfied, so any such chart determines
automatically a smooth structure on M ; see Example 1.3(1) and Example 1.10(1).

Definition 1.9. Let (M,A) be a smooth manifold. Any chart (U,φ) contained in the
maximal smooth atlas A is called a smooth coordinate chart . The corresponding coor-
dinate map φ is called a smooth coordinate map, and its domain U is called a smooth
coordinate domain, or smooth coordinate neighborhood of each of its points. A smooth
coordinate ball is a smooth coordinate domain whose image under a smooth coordinate
map is a ball in Euclidean space. A smooth coordinate cube is defined similarly.



Section 1.2. Smooth Manifolds 7

Here is how one usually thinks about (smooth) coordinate charts on a smooth manifold.
Once we choose a (smooth) coordinate chart (U,φ) on Mn, the (smooth) coordinate map

φ : U → Û ⊆ Rn can be thought of as giving a temporary identification between U and Û .
Using this identification, while we work in this chart, we can think of U simultaneously
as an open subset of M and as an open subset of Rn. Under this identification, we can
represent a point p ∈ M by its coordinates (x1, . . . , xn) = φ(p), and think of this n-
tuple as being the point p. We typically express this by saying “(x1, . . . , xn) is the (local)
coordinate representation for p” or “p = (x1, . . . , xn) in local coordinates”.

Example 1.10.

(0) For each n ∈ N the Euclidean space Rn is a smooth n-manifold with smooth structure
determined by the atlas

{
(Rn, IdRn)

}
. We call this the standard smooth structure on Rn

and the resulting coordinate map the standard coordinates on Rn. (Unless we explicitly
say otherwise, we always use this smooth structure on Rn.) With respect to this smooth
structure, the smooth coordinate charts for Rn are exactly those charts (U,φ) such that

φ is diffeomorphism (in the usual sense) from U ⊆ Rn to another open set Û ⊆ Rn.

(1) Graphs of smooth functions : If U ⊆ Rn is an open set and if f : U → Rk is a
smooth function, then by Example 1.3(1) the graph Γ(f) of f is a topological n-manifold
in the subspace topology. Since Γ(f) is covered by the single graph coordinate chart
φ : Γ(f) → U , we can put a canonical smooth structure on Γ(f) by declaring the graph
coordinate chart

(
Γ(f), φ

)
to be a smooth chart.

(2) Spheres : The unit n-sphere Sn ⊆ Rn+1 is a topological n-manifold according to
Example 1.3(2). We put a smooth structure on Sn as follows. For each i ∈ {1, . . . , n+ 1}
consider the graph coordinate charts (U±

i ∩ Sn, φ±
i ). For any i ̸= j and any choice of ±

signs, the transition maps φ±
i ◦(φ±

j )
−1 and φ±

i ◦(φ∓
j )

−1 are easily computed. For example,
when i < j, we get:(

φ+
i ◦ (φ+

j )
−1
)
(u1, . . . , un) = φ+

i

(
u1, . . . ,

√
1− |u|2

↓
j-th

, . . . , un
)

=
(
u1, . . . , ûi

↓
i-th

, . . . ,
√

1− |u|2
↓
j-th

, . . . , un
)
,

and similar formulas hold in the other cases. When i = j, the domains of φ+
i and φ−

i are

disjoint, so there is nothing to check. Thus, the collection of charts
{
(U±

i ∩ Sn, φ±
i )
}n+1

i=1
is

a smooth atlas, so it defines a smooth structure on Sn, which we call its standard smooth
structure.

(3) Projective spaces : see Appendix A.

(4) Open submanifolds : If U is any open subset of Rn, then U is a topological n-manifold,
and the single chart (U, IdU) determines a smooth structure on U .

More generally, let M be a smooth n-manifold and let U ⊆ M be an open subset.
Define an atlas on U by

AU =
{
smooth charts (V, φ) forM such that V ⊆ U

}
.
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Every point p ∈ U is contained in the domain of some chart (W,φ) for M . If we set
V = W ∩ U , then (V, φ|V ) is a chart in AU whose domain contains p. Therefore, U is
covered by the domains of the charts in AU , and it is easy to verify that AU is a smooth
atlas for U . In conclusion, any open subset ofM is itself a smooth n-manifold in a natural
way. Endowed with this smooth structure, we call any open subset an open submanifold
of M .

We will encounter many more examples of smooth manifolds later in the course and
in the exercise sheets as well.

In the examples we have seen so far, we constructed a smooth manifold structure in
two stages: we started with a topological space and checked that it was a topological
manifold, and then we specified a smooth structure (by means of a smooth atlas due to
Proposition 1.8(a)). The following lemma shows how, given a set with suitable “charts”
that overlap smoothly, we can use these charts to define both a topology and a smooth
structure on the set.

Lemma 1.11 (Smooth manifold chart lemma). Let M be a set. Suppose that we are
given a collection {Uα} of subsets of M together with maps φα : Uα → Rn such that the
following properties are satisfied:

(i) For each α, φα is a bijection between Uα and an open subset φα(Uα) ⊆ Rn.

(ii) For each α and β, the sets φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are open in Rn.

(iii) Whenever Uα ∩ Uβ ̸= ∅, the map

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is smooth.

(iv) Countably many of the sets Uα cover M .

(v) Whenever p, q ∈M with p ̸= q, either there exists some Uα containing both p and q
or there exist disjoint sets Uα and Uβ with p ∈ Uα and q ∈ Uβ.

Then M has a unique smooth manifold structure such that each (Uα, φα) is a smooth
chart.

Proof. For the details of the proof we refer to [Lee13, Lemma 1.35]. The basic idea is to
define a topology on M by taking all sets of the form φ−1

α (V ), where V ⊆ Rn is open, as
a basis.



CHAPTER 2

SMOOTH MAPS

The main reason for introducing smooth structures was to enable us to define smooth
functions on manifolds and smooth maps between manifolds. In Section 2.1 we carry out
this project. In Section 2.2 we introduce a powerful tool for blending together locally
defined smooth objects, called partitions of unity. They are used throughout smooth
manifold theory for building global smooth objects out of local ones. At the end of this
chapter we will give the first applications of partitions of unity.

2.1 Smooth Maps

Definition 2.1. LetM be a smooth n-manifold and let f : M → Rk be a function, where
k, n ∈ N. We say that f is smooth if for every point p ∈ M there exists a smooth chart
(U,φ) for M such that p ∈ U and the composite function f ◦ φ−1 is smooth on the open

subset Û = φ(U) ⊆ Rn.

Figure 2.1: Definition of smooth functions

Remark 2.2. Let M be a smooth manifold. The set C∞(M) of all smooth real-valued
functions onM is an R-vector space: sums and constant multiples of smooth functions are
smooth. Note that C∞(M) is infinite-dimensional, see Exercise 2.21. Moreover, pointwise
multiplication turns C∞(M) into a commutative ring and an associative and commutative
R-algebra.

Definition 2.3. Let M be a topological manifold. Given a function f : M → Rk and
a chart (U,φ) for M , the function f̂ = f ◦ φ−1 : φ(U) → Rk is called the coordinate
representation of f .

Let M be a smooth manifold and let f : M → Rk be a function on M . By definition,
f is smooth if and only if its coordinate representation is smooth in some smooth chart
around each point. According to [Exercise Sheet 3, Exercise 3], smooth functions have
smooth coordinate representations in every smooth chart; that is, f ◦φ−1 : φ(U) → Rk is
smooth for every smooth chart (U,φ) for M .

9



10 Chapter 2. Smooth Maps

Definition 2.4. Let F : M → N be a map between smooth manifolds. We say that F is
a smooth map if for every p ∈M there exist smooth charts (U,φ) containing p and (V, ψ)
containing F (p) such that F (U) ⊆ V and the composite map ψ ◦ F ◦ φ−1 : φ(U) → ψ(V )
is smooth.

Figure 2.2: Definition of smooth maps

Observe that Definition 2.1 is a special case of Definition 2.4 by taking N = V = Rk

and ψ = IdRk .
The first important observation about our definition of smooth maps is that, as one

might expect, smoothness implies continuity.

Proposition 2.5. Every smooth map is continuous.

Proof. Let F : M → N be a map between smooth manifolds. Fix p ∈ M . Since F is
smooth, there are smooth charts (U,φ) containing p and (V, ψ) containing F (p) such that
F (U) ⊆ V and ψ ◦ F ◦ φ−1 : φ(U) → ψ(V ) is smooth, and hence continuous. Since
F (U) ⊆ V and the maps φ : U → φ(U) and ψ : V → ψ(V ) are homeomorphisms, the map

F
∣∣
U
= ψ−1 ◦ (ψ ◦ F ◦ φ−1) ◦ φ : U → V

is continuous as a composition of continuous maps. Therefore, F is continuous in a
neighborhood of each point, and thus continuous on M .

Comment: The requirement that

∀ p ∈M ∃ (U,φ) ∋ p ∃ (V, ψ) ∋ F (p) such that F (U) ⊆ V

in the definition of smoothness is included precisely so that smoothness automatically
implies continuity. [Lee13, Problem 2.1] illustrates what can go wrong if this requirement
is omitted.

Definition 2.6. Let F : M → N be a map between topological manifolds. If (U,φ) and

(V, ψ) are charts for M and N , respectively, then we call F̂ = ψ ◦ F ◦ φ−1 the coordinate
representation of F with respect to the given coordinates . It maps the set φ

(
U ∩ F−1(V )

)
to ψ(V ).

Remark 2.7. If F : M → N is a smooth map between smooth manifolds, then the
coordinate representation of F with respect to every pair of smooth charts for M and N
is smooth, see [Exercise Sheet 3, Exercise 3].

Proposition 2.8 (Equivalent characterizations of smoothness). Let M and N be smooth
manifolds and let F : M → N be a map. Then F is smooth if and only if either of the
following conditions is satisfied:

(a) For every p ∈M there exist smooth charts (U,φ) containing p and (V, ψ) containing
F (p) such that U∩F−1(V ) is open inM and the composite map ψ◦F ◦φ−1 is smooth
from φ

(
U ∩ F−1(V )

)
to ψ(V ).
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(b) F is continuous and there exist smooth atlases
{
(Uα, φα)

}
and

{
(Vβ, ψβ)

}
for M

and N , respectively, such that for each α and β, ψβ ◦F ◦φ−1
α is a smooth map from

φα
(
Uα ∩ F−1(Vβ)

)
to ψβ(Vβ).

Proof. See [Exercise Sheet 3, Exercise 1].

Proposition 2.9 (Smoothness is a local property). Let M and N be smooth manifolds
and let F : M → N be a map. The following statements hold:

(a) If every point p ∈ M has a neighborhood U such that F |U is smooth, then F is
smooth.

(b) If F is smooth, then its restriction to every open subset of M is smooth.

Proof. See [Exercise Sheet 3, Exercise 2].

The next result is essentially just a restatement of the previous proposition, but it
gives a highly useful way of constructing smooth maps.

Lemma 2.10 (Gluing lemma for smooth maps). Let M and N be smooth manifolds and
let {Uα}α∈A be an open cover of M . Suppose that for each α ∈ A we are given a smooth
map Fα : Uα → N such that the maps agree on overlaps: Fα|Uα∩Uβ

= Fβ|Uα∩Uβ
for all

α, β ∈ A. Then there exists a unique smooth map F : M → N such that F |Uα = Fα for
each α ∈ A.

Proposition 2.11. Let M , N and P be a smooth manifolds.

(a) Every constant map c : M → N is smooth.

(b) The identity map IdM of M is smooth.

(c) If U ⊆M is an open submanifold, then the inclusion map ι : U ↪→M is smooth.

(d) If F : M → N and G : N → P are smooth, then so is G ◦ F : M → P .

Proof. See [Exercise Sheet 3, Exercise 3].

Comment: We now have enough information in order to produce a number of interesting
examples of smooth maps. In spite of the apparent complexity of the definition, it is
usually not hard to prove that a particular map is smooth. There are basically only three
common ways to do so:

(1) Write the map in smooth local coordinates and recognize its component functions
as compositions of smooth elementary functions.

(2) Exhibit the map as a composition of maps that are known to be smooth.

(3) Use some special-purpose theorem that applies to the particular case under consid-
eration.

We give below an example of a smooth map utilizing the first method above, and we will
encounter many more examples of smooth maps in the exercise sheets.
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Example 2.12. Consider the unit n-sphere Sn ⊆ Rn+1 with its standard smooth struc-
ture, see Example 1.10(2). The inclusion map ι : Sn ↪→ Rn+1 is continuous (inclusion map
of topological spaces). It is a smooth map, because its coordinate representation with
respect to any of the graph coordinates of Example 1.3(2) is

ι̂(u1, . . . , un) =
(
ι ◦ (φ±

i )
−1
)
(u1, . . . , un)

=
(
u1, . . . , ui−1,±

√
1− |u|2
↓
i-th

, ui, . . . , un
)
,

which is smooth on its domain (the set where |u|2 < 1).

Definition 2.13. Let M and N be smooth manifolds. A diffeomorphism from M to N
is a smooth bijective map M → N that has smooth inverse. We say that M and N are
diffeomorphic if there exists a diffeomorphism between them.

Example 2.14.

(1) Consider the maps

F : Bn → Rn , x 7→ x√
1− |x|2

and
G : Rn → Bn , y 7→ y√

1 + |y|2
.

These maps are smooth, and it is straightforward to check that they are inverses to each
other. Thus, they are both diffeomorphisms, so Bn is diffeomorphic to Rn.

(2) IfM is any smooth manifold and if (U,φ) is any smooth coordinate chart onM , then
the coordinate map φ : U → φ(U) ⊆ Rn is a diffeomorphism. Indeed, it has an identity
map as a coordinate representation.

Proposition 2.15 (Properties of diffeomorphisms).

(a) Every composition of diffeomorphisms is a diffeomorphism.

(b) Every finite product of diffeomorphisms between smooth manifolds is a diffeomor-
phism.

(c) Every diffeomorphism is a homeomorphism and an open map.

(d) The restriction of a diffeomorphism to an open submanifold is a diffeomorphism
onto its image.

(e) “Diffeomorphic” is an equivalence relation on the class of all smooth functions.

Proof. Exercise! (See also Proposition 4.9.)

Just as two topological spaces are considered to be “the same” if they are homeo-
morphic, two smooth manifolds are essentially indistinguishable if they are diffeomorphic.
The central concern of smooth manifold theory is the study of properties of smooth man-
ifolds that they preserved by diffeomorphisms. The dimension is one such property (cf.
p. 1):
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Theorem 2.16 (Diffeomorphism invariance of the dimension). A non-empty smooth m-
manifold cannot be diffeomorphic to a non-empty smooth n-manifold unless m = n.

Proof. Let M be a non-empty smooth m-manifold, let N be a non-empty smooth n-
manifold, and assume that there exists a diffeomorphism F : M → N . Choose any point
p ∈M and consider smooth charts (U,φ) for M containing p and (V, ψ) for N containing

F (p). Then (the restriction of the coordinate representation) F̂ = ψ ◦ F ◦ φ−1 is a diffeo-
morphism from an open subset of Rm to an open subset of Rn. It is now a consequence
of the chain rule that m = n, see [Lee13, Proposition C.4].

2.2 Partitions of Unity

We briefly discuss here partitions of unity, which are tools for “blending together” local
smooth objects into global ones without necessarily assuming that they agree on overlaps
(cf. Lemma 2.10). They are indispensable in smooth manifold theory, and we will soon see
some first applications of partitions of unity. For further information we refer to [Lee13,
Chapter 2, Partitions of Unity].

Definition 2.17. Let M be a topological space and let f : M → Rk be a function. The
support of f is defined as

supp f = {p ∈M | f(p) ̸= 0}.

Moreover,

� if supp f is contained in some open subset U ⊆M , then we say that f is supported
in U ;

� if supp f is a compact set (e.g., if M is a compact space), then we say that f is
compactly supported .

Definition 2.18. Let M be a topological space and let X = (Xα)α∈A be an open cover
of M , indexed by a set A. A partition of unity subordinate to X is an indexed family
(ψα)α∈A of continuous functions ψα : M → R with the following properties:

(i) 0 ≤ ψα(x) ≤ 1, ∀α ∈ A, ∀x ∈M .

(ii) suppψα ⊆ Xα, ∀α ∈ A.

(iii) The family of supports
{
suppψα

}
α∈A is locally finite, i.e., every point p ∈M has a

neighborhood Wp such that Wp ∩ suppψα = ∅ for all but a finite number of α ∈ A.

(iv)
∑
α∈A

ψα(x) = 1, ∀x ∈M .

If now M is a smooth manifold, then a smooth partition of unity is one for which each
of the functions ψα is smooth.

Observe that, due to the local finiteness condition (iii), the sum in (iv) has only finitely
many non-zero terms in a neighborhood of each point, so there is no issue of convergence.
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Theorem 2.19 (Existence of smooth partitions of unity). Let M be a smooth manifold
and let X = (Xα)α∈A be an open cover of M . Then there exists a smooth partition of
unity subordinate to X.

Proof. For a detailed proof of the statement we refer to [Lee13, Theorem 2.23], see also
[Lee09, Theorem 1.73].

Comment: The hypothesis that M is second-countable is used implicitly in the proof of
Theorem 2.19 via the following characterization: If X is a locally Euclidean Hausdorff
space, then X is second-countable if and only if it is paracompact and has countably many
connected components, see [Lee13, Problem 1.5]. In particular, every topological manifold
is paracompact, see [Lee13, Theorem 1.15].

We finally present three interesting applications of partitions of unity.

1 Existence of smooth bump functions:
If M is a topological space, A ⊆ M is a closed subset and U ⊆ M is an open subset

such that A ⊆ U , a continuous function ψ : M → R is called a bump function for A
supported in U if

• 0 ≤ ψ(x) ≤ 1, ∀x ∈M ,

• ψ ≡ 1 on A, and

• suppψ ⊆ U .

In other words, a bump function is a continuous real-valued function that is equal to 1
on a specified set and zero outside a specified neighborhood of that set.

Proposition 2.20. Let M be a smooth manifold. For every closed subset A ⊆M and any
open subset U ⊆ M containing A, there exists a smooth bump function for A supported
in U .

Proof. Set U0 := U and U1 := M \ A, and let {ψ0, ψ1} be a smooth partition of unity
subordinate to the open cover {U0, U1} of M . Since ψ1 ≡ 0 on A, and therefore ψ0 =∑1

i=0 ψi ≡ 1 on A, the function ψ0 has the required properties.

Exercise 2.21: If M is a smooth manifold of dimension n ≥ 1, then the vector space
C∞(M) is infinite-dimensional.

[Hint: Show that if f1, . . . , fk are elements of C∞(M) with non-empty disjoint supports,
then they are linearly independent.]

Solution: Assume first that there is a countable collection F of smooth functions on
M with non-empty disjoint supports. Pick an integer k ≥ 1. We will show that any k
elements f1, . . . , fk ∈ F are linearly independent. To this end, write

λ1f1 + . . .+ λkfk = 0 (2.1)

for some λi ∈ R. For each i ∈ {1, . . . , k}, pick x ∈ supp(fi) such that fi(x) ̸= 0, and
note that fj(x) = 0 for every j ∈ {1, . . . , k} \ {i} by assumption. By evaluating (2.1)
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at the chosen point x, we obtain λifi(x) = 0, which implies λi = 0. This shows that
f1, . . . , fk ∈ F are linearly independent, as claimed.

We will now show that there exists a countable collection of smooth functions on M
with non-empty disjoint supports, which in turn implies that the R-vector space C∞(M)
is infinite-dimensional, as desired. Fix a point p ∈ M and consider a smooth coordinate
chart (U,φ) containing p. In view of [Exercise Sheet 1, Exercise 1] and by further shrinking
U , we may assume that U is a smooth coordinate cube, i.e.,

φ(U) = (0, 1)× . . .× (0, 1) ⊆ Rn.

For each integer i ≥ 1, consider the open subset

Bi := (0, 1)× . . .× (0, 1)×
( 1

i+ 1
,
1

i

)
⊆ φ(U)

and pick any non-empty closed subset Ai of Bi. Since φ : U → φ(U) is a homeomorphism,
by Proposition 2.20 for every i ≥ 1 there exists a smooth bump function fi ∈ C∞(M) for
φ−1(Ai) supported in φ−1(Bi). Since Bi ∩Bj = ∅ whenever i ̸= j, we also have

supp(fi) ∩ supp(fj) = ∅ for i ̸= j.

Therefore, the family (fi)
∞
i=1 is a countable collection of smooth functions on M with

non-empty disjoint supports. This completes the proof of the above assertion.

2 Extension lemma for smooth functions:

In view of Lemma 2.10 it is often possible to construct smooth maps by “gluing
together” maps defined on open subsets. However, one cannot expect to “glue together”
smooth maps defined on closed subsets and obtain a smooth result. For example, the two
functions

f+ : [0,+∞) → R, x 7→ +x,

f− : (−∞, 0] → R, x 7→ −x,

are both smooth and agree at the point 0 where they overlap, but the continuous function
f : R → R, x 7→ |x| that they define is clearly not smooth at the origin. Our second
application of partitions of unity is an important result concerning the possibility of
extending smooth functions from closed sets.

Let M and N be smooth manifolds and let A ⊆ M be an arbitrary subset. We say
that a map F : A→ N is smooth on A if it admits a smooth extension in a neighborhood
of each point; namely, if for every p ∈ A there exists an open subset W ⊆ M containing
p and a smooth map F̃ : W → N whose restriction to W ∩ A agrees with F .

Lemma 2.22 (Extension lemma for smooth functions). Let M be a smooth manifold, let
A ⊆M be a closed subset, and let f : A→ Rk be a smooth function. For any open subset
U ⊆ M containing A, there exists a smooth function f̃ : M → Rk such that f̃ |A = f and

supp f̃ ⊆ U .



16 Chapter 2. Smooth Maps

Proof. For each p ∈ A choose an open neighborhood Wp of p and a smooth function

f̃p : M → Rk such that

f̃p|Wp∩A = f. (2.2)

Replacing Wp by Wp ∩ U , we may assume that Wp ⊆ U . Observe that the family of sets
{Wp}p∈A ∪ (M \ A) is an open cover of M . Let {ψp}p∈A ∪ {ψ0} be a smooth partition of
unity subordinate to this cover, with suppψp ⊆ Wp and suppψ0 ⊆M \ A.

For each p ∈ A, the product ψpf̃p is smooth on Wp, and has a smooth extension to
all of M if we interpret it to be zero on M \ suppψp. (The extended function is smooth
because the two definitions agree on the open subset Wp \ suppψp where they overlap.)
Thus, we can define the function

f̃ : M → Rk, x 7→
∑
p∈A

ψp(x) f̃p(x).

Since the collection of supports {suppψp}p∈A is locally finite, the sum actually has only
finitely many zero terms in a neighborhood of any point of M , and therefore defines a
smooth function. If x ∈ A, then ψ0(x) = 0 by construction and f̃p(x) = f(x) for each p
such that ψp(x) ̸= 0 by (2.2), so

f̃(x) =
∑
p∈A

ψp(x) f̃p(x) =

(
ψ0(x) +

∑
p∈A

ψp(x)

)
f(x) = f(x).

Thus, f̃ is indeed an extension of f . Finally, we have

supp f̃ ⊆
⋃
p∈A

suppψp =
⋃
p∈A

suppψα ⊆ U,

where the equality in the middle is a property of locally finite collections, see [Lee13,
Lemma 1.13].

Comments:

(1) The conclusion of the extension lemma can be false if A is not closed; see [Lee13,
Exercise 2.27].

(2) The assumption in the extension lemma that the codomain is Rk, and not some other
manifold, is necessary: for other codomains, extensions can fail to exist for topological
reasons.

3 Closed subsets as level sets: The next result tells us that every closed subset of
a smooth manifold can be expressed as a level set of some smooth real-valued function.
This remarkable fact will not be used anywhere in these notes, so we omit its proof and
we refer to [Lee13, Theorem 2.29] for the details.

Theorem 2.23. Let M be a smooth manifold. If K is a closed subset of M , then there
exists a smooth non-negative function f : M → R such that f−1(0) = K.

Exercise 2.24: Let A and B be disjoint closed subsets of a smooth manifold M . Show
that there exists f ∈ C∞(M) such that 0 ≤ f(x) ≤ 1 for all x ∈ M , f−1(0) = A and
f−1(1) = B.
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Solution: By Theorem 2.23 there exist non-negative smooth functions fA and fB on M
such that

f−1
A (0) = A and f−1

B (0) = B. (2.3)

Consider now the function

f : M → R, x 7→ fA(x)

fA(x) + fB(x)

and observe that it is well-defined (that is, fA(x) + fB(x) ̸= 0 for all x ∈M) due to (2.3)
and since A ∩ B = ∅. Moreover, f is smooth as a quotient of smooth functions, and it
satisfies

0 ≤ f(x) ≤ 1 for all x ∈M,

since fA and fB are non-negative. Finally, it follows from (2.3) that

f−1(0) = A and f−1(1) = B.

Hence, f ∈ C∞(M) has the desired properties.





CHAPTER 3

THE TANGENT BUNDLE

3.1 Tangent Vectors

Given a point a ∈ Rn, we define the geometric tangent space to Rn at a to be the set

Rn
a := {a} × Rn =

{
(a, v)

∣∣ v ∈ Rn
}
.

A geometric tangent vector in Rn is an element of Rn
a for some a ∈ Rn. We abbreviate

(a, v) as va or v|a, and we think of va as the vector v with initial point at a.

Figure 3.1: Geometric tangent space

The set Rn
a is an R-vector space under the natural operations

va + wa := (v + w)a,

λ va := (λ v)a.

The vectors ei|a, 1 ≤ i ≤ n, (where ei denotes the i-th standard basis vector of Rn) are a
basis of Rn

a . In fact, Rn
a is essentially the same as Rn itself; the only reason why we add

the index a is so that the geometric tangent spaces Rn
a and Rn

b at distinct points a and b
are disjoint sets.

Geometric tangent vectors provide a means of taking directional derivatives of func-
tions. For example, any geometric tangent vector v ∈ Rn

a yields a map

Dv

∣∣
a
: C∞(Rn) → R

f 7→ Dv

∣∣
a
f = Dvf(a) =

d

dt

∣∣∣∣
t=0

f(a+ tv),

the directional derivative of f in the direction v at a. This operation is R-linear and
satisfies the product rule:

Dv

∣∣
a
(fg) = f(a)Dv

∣∣
a
g + g(a)Dv

∣∣
a
f.

19
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If va = viei|a in terms of the standard basis, then by the chain rule Dv

∣∣
a
f can be written

more concretely as

Dv

∣∣
a
f = vi

∂f

∂xi
(a). (3.1)

In particular, if va = ej|a, then

Dej

∣∣
a
f =

∂f

∂xj
(a). (3.2)

With this construction in mind, we make the following definition.

Definition 3.1. Given a ∈ Rn, a map w : C∞(Rn) → R is called a derivation at a if it is
R-linear and satisfies the product rule:

w(fg) = f(a)w(g) + g(a)w(f).

We denote by TaRn the set of all derivations of C∞(Rn) at a. Clearly, TaRn is an
R-vector space under the natural operations

(w1 + w2)(f) := w1f + w2f,

(λw)f := λwf.

The most important fact about TaRn is that it is finite-dimensional; in fact, it is
naturally isomorphic to the geometric tangent space Rn

a that we defined above. The proof
will be based on the following lemma.

Lemma 3.2 (Properties of Derivations). Let a ∈ Rn, w ∈ TaRn and f, g ∈ C∞(Rn).

(a) If f is constant, then wf = 0.

(b) If f(p) = g(p) = 0, then w(fg) = 0.

Proof.

(a) Consider the constant function f1 ≡ 1 ∈ C∞(Rn). By the product rule we obtain

wf1 = w(f1 · f1) =����*1
f1(a)wf1 +����*1

f1(a)wf1 = 2wf1,

which implies that wf1 = 0. Now, since f ≡ c is constant, by linearity we obtain

wf = w(cf1) = cwf1 = 0.

(b) Follows immediately from the product rule.

Proposition 3.3. Let a ∈ Rn.

(a) For each geometric tangent vector va ∈ Rn
a , the map

Dv

∣∣
a
: C∞(Rn) → R

f 7→ Dv

∣∣
a
f = Dvf(a) =

d

dt

∣∣∣∣
t=0

f(a+ tv)

(directional derivative of f in the direction v at a) is a derivation of C∞(Rn) at a.
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(b) The map

Φ: Rn
a → TaRn

v 7→ Dv

∣∣
a

is an R-linear isomorphism.

(c) The n derivations
∂

∂x1

∣∣∣∣
a

, . . . ,
∂

∂xn

∣∣∣∣
a

defined by
∂

∂xi

∣∣∣∣
a

f :=
∂f

∂xi
(a) , 1 ≤ i ≤ n,

form a basis of TaRn, and thus

dimR TaRn = n.

Proof.

(a) Easy to check (using calculus).

(b) Linearity: For every f ∈ C∞(Rn) we have

Φ(λ1v1 + λ2v2)(f) = Dλ1v1+λ2v2

∣∣
a
(f)

=
d

dt

∣∣∣∣
t=0

f
(
a+ t(λ1v1 + λ2v2)

)
= Df(a) · (λ1v1 + λ2v2)

= λ1
d

dt

∣∣∣∣
t=0

f(a+ tv1) + λ2
d

dt

∣∣∣∣
t=0

f(a+ tv2)

= λ1Φ(v1)(f) + λ2Φ(v2)(f)

=
(
λ1Φ(v1) + λ2Φ(v2)

)
(f),

which shows the R-linearity of Φ.

Injectivity: Suppose that Φ(va) = Dv|a = 0 is the zero derivation. Writing va = vi ei|a
in terms of standard basis and considering the j-th coordinate function xj : Rn → R,
thought of as a smooth function on Rn, we obtain:

0 = Dv

∣∣
a
xj

(3.1)
=== vi

∂

∂xi
(xj)

∣∣∣∣
x=a

= vj,

where the last equality follows because ∂xj

∂xi
= 0 for i ̸= j, and ∂xi

∂xi
= 1. Hence, va = 0 ∈ Rn

a .

Surjectivity: Let w ∈ TaRn. Set v := vi ei|a ∈ Rn
a , where v

i = w(xi) ∈ R. We will
show that w = Φ(v) = Dv|a, To this end, let f ∈ C∞(Rn). By Taylor’s theorem [Lee13,
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Theorem C.15] we can write

f(x) = f(a) +
n∑
i=1

∂f

∂xi
(a) (xi − ai)+

+
n∑

i,j=1

(xi − ai) (xj − aj)

∫ 1

0

(1− t)
∂2f

∂xi∂xj
(
a+ t(x− a)

)
dt︸ ︷︷ ︸ .

Note that each term in the last sum above is a product of two smooth functions of x that
vanish at x = a: one is (xi − ai) and the other is (xj − aj) · (integral). (The integral is a
smooth function of x by iterative application of [Lee13, Theorem C.14].) By Lemma 3.2(b)
the derivation w annihilates this entire sum. Thus, thanks to the R-linearity of w, we
obtain

wf =�����:0
w
(
f(a)

)
+

n∑
i=1

w

(
∂f

∂xi
(a) (xi − ai)

)

=
n∑
i=1

∂f

∂xi
(a)
(
����*

vi

w(xi)−����*
0

w(ai)
)

=
n∑
i=1

vi
∂f

∂xi
(a) = Dv|a f.

(c) By (3.2) we know that ∂
∂xi

= Dei |a. Hence, (c) follows immediately from (b).

Definition 3.4. Let M be a smooth manifold and let p ∈M . A map v : C∞(M) → R is
called a derivation at p if it is R-linear and satisfies the product rule:

v(fg) = f(a) v(g) + g(a) v(f), ∀ f, g ∈ C∞(M).

We denote by TpM the set of all derivations of C∞(M) at p. Clearly, TpM is an R-vector
space, called the tangent space to M at p ∈ M . An element of TpM is called a tangent
vector at p.

Lemma 3.5. Let M be a smooth manifold, p ∈M , v ∈ TpM and f, g ∈ C∞(M).

(a) If f is constant, then vf = 0.

(b) If f(p) = g(p) = 0, then v(fg) = 0.

Proof. Exercise! (cf. Lemma 3.2)

With the motivation of geometric tangent vectors in Rn in mind, we visualize tangent
vectors to M as “arrows” that are tangent to M and whose base points are attached to
M at the given point. For alternative descriptions of tangent vectors to M , see [Exercise
Sheet 4, Exercise 4], Section 3.5 and [Exercise Sheet 4, Exercise 5].
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v

M

p TpM

Figure 3.2: Tangent vector to a manifold at a point

3.2 The Differential of a Smooth Map

Definition 3.6. If F : M → N is a smooth map, then for each p ∈M we define a map

dFp : TpM → TF (p)N,

called the differential (or tangent map) of F at p, as follows. Given v ∈ TpM , we let
dFp(v) be the derivation at F (p) that acts on f ∈ C∞(N) by

dFp(v)(f) = v(f ◦ F ) .

The operator dFp(v) : C
∞(N) → R is a derivation at F (p). Indeed, it is R-linear, since v

is so, and it satisfies the product rule:

dFp(v)(fg) = v
(
(fg) ◦ F

)
= v
(
(f ◦ F )(g ◦ F )

)
= (f ◦ F )(p) v(g ◦ F ) + (g ◦ F )(p) v(f ◦ F )

= f
(
F (p)

)
dFp(v)(g) + g

(
F (p)

)
dFp(v)(f).

Proposition 3.7 (Properties of differentials). Let F : M → N and G : N → P be smooth
maps and let p ∈M .

(a) dFp : TpM → TF (p)N is an R-linear map.

(b) d(G ◦ F ) = dGF (p) ◦ dFp : TpM → T(G◦F )(p)P .

(c) d(IdM)p = IdTpM : TpM → TpM .

(d) If F is a diffeomorphism, then dFp : TpM → TF (p)N is an isomorphism, and it
holds that (dFp)

−1 = d(F−1)F (p).

Proof. See [Exercise Sheet 4, Exercise 1].

Our first important application of the differential will be to use coordinate charts to
relate the tangent space to a point on a smooth manifold with the Euclidean tangent
space. But there is an important technical issue that we must address first. While the
tangent space is defined in terms of smooth functions on the whole manifold, coordinate
charts are in general defined only on open subsets. The key point, expressed in the next
proposition, is that tangent vectors act locally.

Proposition 3.8. Let M be a smooth manifold, p ∈ M and v ∈ TpM . If f, g ∈ C∞(M)
agree on some neighborhood of p, then vf = vg.
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Proof. Set h := f − g and observe that h is a smooth function on M that vanishes in
a neighborhood U of p. By Proposition 2.20 there exists a smooth bump function ψ for
supph supported in M \ {p} (open subset of M which contains supph, since h(x) = 0
for all x ∈ U). Since ψ ≡ 1 where h is non-zero, the product ψh is identically equal to h.
Since h(p) = ψ(p) = 0, by Lemma 3.5(b) we obtain v(h) = v(ψh) = 0, so v(f) = v(g) by
linearity.

Using Proposition 3.8, we can identify the tangent space to an open submanifold with
the tangent space to the whole manifold.

Proposition 3.9 (The tangent space to an open submanifold). Let M be a smooth man-
ifold, let U ⊆ M be an open subset and let ι : U ↪→ M be the inclusion map. For every
p ∈ U , the differential dιp : TpU → TpM is an isomorphism.

Proof. Recall that U is a smooth manifold by Example 1.10(4) and that ι is a smooth
map by Proposition 2.11(c). Fix now p ∈ U , consider the differential dιp : TpU → TpM ,
and let V be a neighborhood of p such that V ⊆ U .

Injectivity: Let v ∈ TpU such that dιp(v) = 0 ∈ TpM . If f ∈ C∞(U) is arbitrary,

then by Lemma 2.22 there exists f̃ ∈ C∞(M) such that f̃ |V = f . Since then f and f̃ |U
are smooth functions on U that agree in a neighborhood of p, Proposition 3.8 implies

vf = v
(
f̃
∣∣
U

)
= v
(
f̃ ◦ ι

)
= dιp(v)

(
f̃
)
= 0.

Hence, v = 0 ∈ TpU , so dιp is injective.

Surjectivity: Let w ∈ TpM . Define

v : C∞(U) → R, f 7→ wf̃,

where f̃ is any smooth function on M that agrees with f on V , see Lemma 2.22. By
Proposition 3.8, vf is independent of the choice of f̃ , so v is well-defined, and it is easy
to check that it is a derivation of C∞(U) at p. For any g ∈ C∞(M) we have

dιp(v)(g) = v(g ◦ ι) = w(g̃ ◦ ι) = wg,

where the last equality follows from the fact that g ◦ ι, g̃ ◦ ι and g all agree on V . Hence,
dιp(v) = w, and thus dιp is surjective.

Given an open subset U ⊆ M , the isomorphism dιp from TpU to TpM is canonically
defined, independent of any choices. From now on we identify TpU with TpM for any
p ∈ U . This identification just amounts to the observation that dιp(v) is the same
derivation as v, though of as acting on functions on the bigger manifold M instead of
on functions on U . Since the action of a derivation on a function depends only on the
values of the function in an arbitrarily small neighborhood (see Proposition 3.8), this is
a harmless identification. In particular, this means that any tangent vector v ∈ TpM
can be unambiguously applied to the functions defined only in a neighborhood of p, not
necessarily on all of M .

Proposition 3.10. If M is a smooth n-manifold, then for each p ∈M , the tangent space
TpM is an n-dimensional R-vector space.
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Proof. Fix p ∈ M and let (U,φ) be a smooth coordinate chart containing p. Since

φ : U → Û ⊆ Rn is a diffeomorphism by Example 2.14(2), dφp : TpU → Tφ(p)Û is an
isomorphism by Proposition 3.7(d). Since Proposition 3.9 guarantees that TpU ∼= TpM

and Tφ(p)Û ∼= Tφ(p)Rn, it follows from Proposition 3.3(c) that

dimTpM = dimTφ(p)Rn = n.

3.3 Computations in Local Coordinates

Next, we will show how to do computations with tangent vectors and differentials in local
coordinates.

LetM be a smooth manifold and let (U,φ) be a smooth coordinate chart onM . Then

φ is a diffeomorphism from U to an open subset Û ⊆ Rn. By Propositions 3.7(d) and 3.9
we deduce that dφp : TpM → Tφ(p)Rn is an R-linear isomorphism (for each p ∈ U). By
Proposition 3.3(c) the derivations

∂

∂x1

∣∣∣∣
φ(p)

, . . . ,
∂

∂xn

∣∣∣∣
φ(p)

form a basis of Tφ(p)Rn. Therefore, the preimages of these vectors under the isomorphism
dφp, denoted by ∂

∂xi

∣∣
p
, form a basis of TpM . These vectors are characterized by

∂

∂xi

∣∣∣∣
p

= (dφp)
−1

(
∂

∂xi

∣∣∣∣
φ(p)

)
3.7(d)
=== d(φ−1)φ(p)

(
∂

∂xi

∣∣∣∣
φ(p)

)
. (3.3)

Unwinding the definitions, we see that ∂
∂xi

∣∣
p
acts on a function f ∈ C∞(U) by

∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
φ(p)

(f ◦ φ−1) =
∂f̂

∂xi
(p̂),

where f̂ := f ◦ φ−1 is the coordinate representation of f and p̂ = (p1, . . . , pn) = φ(p)
is the coordinate representation of p. In other words, ∂

∂xi

∣∣
p
is the derivation at p that

takes the i-th partial derivative of (the coordinate representation of) f at (the coordinate
representation of) p. The vectors ∂

∂xi

∣∣
p
are called the coordinate vectors at p associated

with the given coordinate system. In the special case of standard coordinates on Rn, the
vectors ∂

∂xi

∣∣
p
are literally the partial derivative operators

To summarize, if M is a smooth n-manifold and if p ∈ M , then TpM is an n-
dimensional R-vector space, and for any smooth coordinate chart

(
U, (xi)

)
containing p,

the coordinate vectors
{

∂
∂xi

∣∣
p

}n
i=1

form a basis for TpM . Thus, a tangent vector v ∈ TpM

can be written uniquely as a linear combination

v = vi
∂

∂xi

∣∣∣∣
p

.

The ordered basis
(
∂
∂xi

∣∣
p

)
is called a coordinate basis for TpM and the numbers (vi) are

called the components of v with respect to the coordinate basis. If v is known, then its
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components can be easily computed from its action on the coordinate functions. For each
j ∈ {1, . . . , n}, the components of v are given by vj = v(xj) (where we think of xj as a
smooth real-valued function on U), because

v(xj) =

(
vi

∂

∂xi

∣∣∣∣
p

)
(xj) = vi

∂xj

∂xi
(p) = vj .

We now explore how differentials look in coordinates. We begin by considering the case
of a smooth map F : U ⊆ Rn → V ⊆ Rm between open subsets of Euclidean spaces. For
any p ∈ U we will determine the matrix of dFp : TpRn → TF (p)Rm in terms of the standard
coordinate bases. Denoting by (x1, . . . , xn) (respectively (y1, . . . , ym)) the coordinates in
the domain (respectively codomain), we use the chain rule to compute the action of dFp
on a typical basis vector as follows:

dFp

(
∂

∂xi

∣∣∣∣
p

)
f =

∂

∂xi

∣∣∣∣
p

(f ◦ F ) = ∂f

∂yj
(
F (p)

) ∂F j

∂xi
(p)

=

(
∂F j

∂xi
(p)

∂

∂yj

∣∣∣∣
F (p)

)
f.

Thus,

dFp

(
∂

∂xi

∣∣∣∣
p

)
=
∂F j

∂xi
(p)

∂

∂yj

∣∣∣∣
F (p)

. (3.4)

In other words, the matrix of dFp in terms of the coordinate bases is
∂F 1

∂x1
(p) · · · ∂F 1

∂xn
(p)

...
. . .

...

∂Fm

∂x1
(p) · · · ∂Fm

∂xn
(p)

 ,

that is, the Jacobian matrix of F at p, which is the matrix representation of the total
derivative DF (p) : Rn → Rm. Therefore, in this case, dFp : TpRn → TF (p)Rm corresponds
to the total derivative DF (p) : Rn → Rm, under the usual identification of Euclidean
spaces with their tangent spaces.

We now consider the more general case of a smooth map F : M → N between two
smooth manifolds. Choosing smooth coordinate charts (U,φ) for M containing p and
(V, ψ) for N containing F (p), we obtain the coordinate representation

F̂ = ψ ◦ F ◦ φ−1 : φ
(
U ∩ F−1(V )

)
→ ψ(V )

see Figure 3.3, and we also denote by p̂ = φ(p) the coordinate representation of p. By the

computation above, dF̂p̂ is represented with respect to the standard coordinates bases by
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the Jacobian matrix of F̂ at p̂. Using the fact that F ◦ φ−1 = ψ−1 ◦ F̂ , we compute

dFp

(
∂

∂xi

∣∣∣∣
p

)
dfn
== dFp

(
d(φ−1)p̂

(
∂

∂xi

∣∣∣∣
p̂

))
Prop.
===
3.7(b)

d(F ◦ φ−1︸ ︷︷ ︸
ψ−1◦F̂

)p̂

(
∂

∂xi

∣∣∣∣
p̂

)

Prop.
===
3.7(b)

d(ψ−1)F̂ (p̂)

(
dF̂p̂

(
∂

∂xi

∣∣∣∣
p̂

))
(3.4)
== d(ψ−1)F̂ (p̂)

(
∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
p̂

)
dfn and
=====
linearity

∂F̂ j

∂xi
(p̂)

∂

∂yj

∣∣∣∣
F (p)

. (3.5)

Thus, dFp is represented in coordinate bases by the Jacobian matrix of (the coordinate
representation of) F . In fact, the definition of the differential was cooked up precisely in
order to give a coordinate-independent meaning to the Jacobian matrix.

Figure 3.3: The differential in coordinates

Finally, suppose that
(
U,φ = (xi)

)
and

(
V, ψ = (x̃i)

)
are two smooth charts on M

and that p ∈ U ∩ V . Any tangent vector at p can be represented with respect to either
coordinates basis

(
∂
∂xi

∣∣
p

)
or
(
∂
∂x̃i

∣∣
p

)
. How are the two representations related?

Figure 3.4: Change of coordinates

In this situation it is customary to write the transition map ψ ◦ φ−1 : φ(U ∩ V ) →
ψ(U ∩ V ) in the following notation:

ψ ◦ φ−1(x) =
(
x̃1(x), . . . , x̃n(x)

)
.

Here we are indulging in a typical abuse of notation: in the expression x̃i(x) we think
of x̃i as a coordinate function (whose domain is an open subset of M , identified with an
open subset of Rn), but we think of x as representing a point (in this case, in φ(U ∩ V )).
By (3.4) we have

d(ψ ◦ φ−1)φ(p)

(
∂

∂xi

∣∣∣∣
φ(p)

)
=
∂x̃j

∂xi
(
φ(p)

) ∂

∂x̃j

∣∣∣∣
ψ(p)

.
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Using the definition of coordinate vectors, we obtain

∂

∂xi

∣∣∣∣
p

(3.3)
== d(φ−1)φ(p)

(
∂

∂xi

∣∣∣∣
φ(p)

)
Prop.
===
3.7(b)

d(ψ−1)ψ(p) · d(ψ ◦ φ−1)φ(p)

(
∂

∂xi

∣∣∣∣
φ(p)

)

= d(ψ−1)ψ(p)

(
∂x̃j

∂xi
(
φ(p)

) ∂

∂x̃j

∣∣∣∣
ψ(p)

)
(3.3)

=====
linearity

∂x̃j

∂xi
(
φ(p)︸︷︷︸
= p̂

) ∂

∂x̃j

∣∣∣∣
p

. (3.6)

(This formula looks exactly the same as the chain rule for partial derivatives in Rn.)
Applying this to the components of a vector

v = vi
∂

∂xi

∣∣∣∣
p

= ṽj
∂

∂x̃j

∣∣∣∣
p

,

we find that the components of v transform by the rule

ṽj =
∂x̃j

∂xi
(p̂) vi. (3.7)

3.4 The Tangent Bundle

Definition 3.11. Let M be a smooth manifold. The tangent bundle of M is denoted by
TM and is defined as the disjoint union of the tangent spaces at all points of M :

TM =
⊔
p∈M

TpM.

We usually write an element of this disjoint union as an ordered pair (p, v) with p ∈M
and v ∈ TpM ; we sometimes also write vp for (p, v). The tangent bundle comes equipped
with a natural projection map π : TM → M , which sends each vector in TpM to the
point p at which is tangent: (p, v) 7→ p.

For example, when M = Rn, using Proposition 3.3, we see that the tangent bundle of
Rn can be canonically identified with the disjoint union of its geometric tangent spaces,
which in turn is just the Cartesian product of Rn with itself:

T(Rn) =
⊔
p∈Rn

TpRn ∼=
⊔
p∈Rn

Rn
p =

⊔
p∈Rn

{p} × Rn = Rn × Rn .

An element of this Cartesian product can be thought of as representing either the geo-
metric tangent vector vp or the derivation Dv|p defined in Proposition 3.3(a). In general,
however, the tangent bundle of a smooth manifold cannot be identified in a natural way
with a Cartesian product, because there is no canonical way to identify tangent spaces at
distinct points with each other.
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The tangent bundle of a smooth manifold can be thought of simply as a disjoint union
of vector spaces, but it is much more than that. The next proposition shows that the
tangent bundle of a smooth manifold can be considered as a smooth manifold in its own
right. For its proof we will use Lemma 1.11.

Proposition 3.12. For any smooth n-manifold M , the tangent bundle TM has a natural
topology and smooth structure that make it into a smooth (2n)-manifold. With respect to
this structure, the projection π : TM →M is smooth.

Proof. We begin by defining the maps that will become our smooth charts. Given any
smooth chart (U,φ) for M , observe that π−1(U) is the set of all tangent vectors to M at
all points of U . Denote by (x1, . . . , xn) the coordinate functions of φ, and define a map

φ̃ : π−1(U) → R2n,

φ̃

(
vi

∂

∂xi

∣∣∣∣
p

)
=
(
x1(p), . . . , xn(p), v1, . . . , vn

)
. (3.8)

Its image is the set φ(U)× Rn, which is an open subset of R2n. It is a bijection onto its
image, because its inverse can be explicitly written as

φ̃−1
(
x1, . . . , xn, v1, . . . , vn

)
= vi

∂

∂xi

∣∣∣∣
φ−1(x)

.

Now, suppose that we are given two smooth charts (U,φ) and (V, ψ) for M , and

consider the corresponding “charts”
(
π−1(U), φ̃

)
and

(
π−1(V ), ψ̃

)
for TM . The sets

φ̃
(
π−1(U) ∩ π−1(V )

)
= φ(U ∩ V )× Rn

and
ψ̃
(
π−1(U) ∩ π−1(V )

)
= ψ(U ∩ V )× Rn

are open in R2n, and the transition map

ψ̃ ◦ φ̃−1 : φ(U ∩ V )× Rn → ψ(U ∩ V )× Rn

can be written explicitly as

(
ψ̃ ◦ φ̃−1

)(
x1, . . . , xn, v1, . . . , vn

)
= ψ̃

(
vi

∂

∂xi

∣∣∣∣
φ−1(x)

)
(3.7)
== ψ̃

((
vi
∂x̃j

∂xi

) ∂

∂x̃j

∣∣∣∣
φ−1(x)

)

=
(
x̃1, . . . , x̃n,

∂x̃1

∂xi
vi, . . . ,

∂x̃n

∂xi
vi
)
,

which is clearly smooth.
Choosing a countable cover {Ui} of M by smooth coordinate domains, we obtain a

countable cover of TM by coordinate domains {π−1(Ui)} satisfying conditions (i)-(iv) of
Lemma 1.11. To check the Hausdorff condition (v), just note that any two points in the
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same fiber of π lie in one chart, while if (p, v) and (q, w) lie in different fibers, there exist
disjoint smooth coordinate domains U and V for M such that p ∈ U and q ∈ V , and then
π−1(U) and π−1(V ) are disjoint coordinate neighborhoods containing (p, v) and (q, w),
respectively. This completes the proof of the first part of the statement.

Finally, to check that π : TM →M is smooth, note that with respect to charts (U,φ)
forM and

(
π−1(U), φ̃

)
for TM , its coordinate representation φ◦π◦φ̃−1 is π̂(x, v) = x.

The coordinates (xi, vi) given by (3.8) are called natural coordinates on TM .

Proposition 3.13. If M is a smooth n-manifold which can be covered by a single smooth
chart, then its tangent bundle TM is diffeomorphic to M × Rn.

Proof. If (U,φ) is a global smooth chart for M , then φ is, in particular, a diffeomor-

phism from U = M to an open subset Û ⊆ Rn, see Example 2.14(2). The proof of
Proposition 3.12 showed that the natural coordinate chart φ̃ is a bijection from TM to
Û × Rn, and the smooth structure on TM is defined essentially by declaring φ̃ to be
diffeomorphism.

Comment: In general, the tangent bundle is not globally diffeomorphic (or ever homeo-
morphic) to a product of the manifold with Rn.

Let F : M → N be a smooth map. By putting together the differentials of F at all
points of M , we obtain a globally defined map between tangent bundles, called the global
differential and denoted by dF : TM → TN . This is just the map whose restriction to
each tangent space TpM ⊆ TM is dFp.

One important feature of the smooth structure we have defined on the tangent bundle is
that it makes the differential of a smooth map into a smooth map between tangent bundles;
namely, if F : M → N is a smooth map, then its global differential dF : TM → TN is
also a smooth map, see [Exercise Sheet 5, Exercise 4].

Proposition 3.14 (Properties of the global differential). Let F : M → N and G : N → P
be smooth maps. The following statements hold:

(a) d(G ◦ F ) = dG ◦ dF : TM → TP .

(b) d(IdM) = IdTM : TM → TM .

(c) If F is a diffeomorphism, then dF : TM → TN is also a diffeomorphism, and it
holds that (dF )−1 = d(F−1).

Proof. See [Exercise Sheet 5, Exercise 4].

3.5 Velocity Vectors of Curves

Recall that a continuous (parametrized) curve in a topological manifoldM is a continuous
map γ : J → M , where J ⊆ R is an interval. Our definition of tangent spaces leads to a
natural interpretation of velocity vectors.

Definition 3.15. Let M be a smooth manifold.
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(a) A smooth (parametrized) curve in M is a smooth map γ : J → M , where J ⊆ R is
an interval.

(b) Given a smooth curve γ : J → M in M and an instant t0 ∈ J , the velocity of γ at
t0 is defined to be the tangent vector

γ′(t0) := dγ

(
d

dt

∣∣∣∣
t=t0

)
∈ Tγ(t0)M,

where d/dt|t0 is the standard coordinate basis vector in Tt0R. Other common nota-
tions for the velocity vector are:

γ̇(t0) and
dγ

dt
(t0)

Figure 3.5: Velocity vector of a curve

Assume that M , γ and t0 are as in Definition 3.15. The tangent vector γ′(t0) acts on
functions f ∈ C∞(M) by

γ′(t0)f = dγ

(
d

dt

∣∣∣∣
t=t0

)
f =

d

dt

∣∣∣∣
t=t0

(f ◦ γ) = (f ◦ γ)′(t0).

In other words, γ′(t0) is the derivation at γ(t0) obtained by taking the derivative of a
function along γ. (If t0 is an endpoint of the interval J ⊆ R, this still holds, provided that
we interpret the derivative with respect to t as a one-sided derivative, or equivalently as
the derivative of any smooth extension of f ◦ γ to an open subset of R.)

Now, let (U,φ) be a smooth chart for M with coordinate functions (xi). If γ(t0) ∈ U ,
then we can write the coordinate representation of γ as

γ̂(t) =
(
γ1(t), . . . , γn(t)

)
,

at least for t ∈ J sufficiently close to t0 ∈ J , and then the coordinate formula for the
differential (3.5) yields

γ′(t0) =
dγi

dt
(t0)

∂

∂xi

∣∣∣∣
γ(t0)

.

This means that γ′(t0) is given by essentially the same formula as it would be in Euclidean
space: it is the tangent vector whose components in a coordinate basis are the derivatives
of the component functions of γ.

The next proposition shows that every tangent vector on a manifold is the velocity
vector of some curve. This gives a different and somewhat more geometric way to think
about the tangent bundle: it is just the set of all velocity vectors of smooth curves in M .

Proposition 3.16 (Tangent vectors as velocity vectors of smooth curves). Let M be
a smooth manifold. If p ∈ M , then for any v ∈ TpM there exists a smooth curve
γ : (−ε, ε) →M such that γ(0) = p and γ′(0) = v.

Proof. See [Exercise Sheet 4, Exercise 5].
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Proposition 3.17 (The velocity of a composite curve). If F : M → N is a smooth map
and if γ : J → M is a smooth curve, then for any t0 ∈ J , the velocity at t = t0 of the
composite curve F ◦ γ : J → N is given by

(F ◦ γ)′(t0) = dF
(
γ′(t0)

)
.

Proof. See [Exercise Sheet 4, Exercise 5].

Corollary 3.18 (Computing the differential using a velocity vector). If F : M → N is a
smooth map, p ∈M and v ∈ TpM , then

dFp(v) = (F ◦ γ)′(0)

for any smooth curve γ : J →M such that 0 ∈ J , γ(0) = p and γ′(0) = v.

Proof. See [Exercise Sheet 4, Exercise 5].



CHAPTER 4

MAPS OF CONSTANT RANK

Because the differential of a smooth map is supposed to represent the “best linear ap-
proximation” to the map near a given point, we can learn a great deal about a map by
studying linear-algebraic properties of its differential. The most essential property of the
differential is its rank (the dimension of its image). In this chapter we study the ways
in which geometric properties of smooth maps can be detected from their differentials.
The maps for which differentials give good local models turn out to be the ones whose
differentials have constant rank.

4.1 Immersions, Submersions, and Embeddings

Definition 4.1. Given a smooth map F : M → N and a point p ∈ M , the rank of
F at p is defined to be the rank of the linear map dFp : TpM → TF (p)N ; it is the
rank of the Jacobian matrix of F in any smooth chart, or the dimension of the image
Im(dFp) ⊆ TF (p)N . If F has the same rank r at every point, then we say that it has
constant rank and we write rkF = r.

Note that the rank of F at each point is bounded above by min{dimM, dimN}. If
the rank of dFp is equal to this upper bound, then we say that F has full rank at p. If F
has full rank everywhere, then we say that F has full rank.

Definition 4.2. A smooth map F : M → N is called

(a) a smooth immersion if its differential is injective at each point or, equivalently, if
rkF = dimM ;

(b) a smooth submersion if its differential is surjective at each point or, equivalently, if
rkF = dimN ; and

(c) a smooth embedding if it is a smooth immersion that is also topological embedding ,
i.e., a homeomorphism onto its image F (M) ⊆ N in the subspace topology.

Smooth immersions and embeddings are essential ingredients in the theory of subman-
ifolds (see Chapter 5), while smooth submersions play a role in smooth manifold theory
closely analogous to the role played by quotient maps in topology (see Subsection 4.3.1

33
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and [Lee13, Chapter 4, Smooth Covering Maps]). We will see that smooth immersions
and submersions behave locally like injective and surjective linear maps, respectively (see
Theorem 4.11).

Comment: A smooth embedding is a map that is both a topological embedding and
a smooth immersion, not just a topological embedding that happens to be smooth; see
Example 4.5(1).

Lemma 4.3. Let F : M → N be a smooth map. If dFp is injective (respectively surjective)
for some p ∈M , then p has a neighborhood U such that F |U is an immersion (respectively
submersion).

Proof. If we choose any smooth coordinates for M near p and for N near F (p), either
hypothesis means that the Jacobian matrix of F in coordinates has full rank at p ∈ M .
By [Exercise Sheet 2, Exercise 3] we know that the set of n ×m matrices of full rank is
an open subset of M(n×m,R) (where m = dimM and n = dimN), so by continuity, the
Jacobian of F (in coordinates) has full rank in some neighborhood of p ∈M .

Example 4.4.

(1) If γ : J → M is a smooth curve in a smooth manifold M , then γ is an immersion if
and only if γ′(t) ̸= 0 for all t ∈ J .

(2) If M is a smooth manifold and its tangent bundle TM is given the smooth manifold
structure described in Proposition 3.12, then the projection π : TM → M is a smooth
submersion. Indeed, we showed that with respect to any smooth local coordinates (xi) on
an open subset U ⊆ M and the corresponding natural coordinates (xi, vi) on π−1(U) ⊆
TM , the coordinate representation of π is π̂(x, v) = x, and thus

Jπ̂ =
(
IddimM O

)
,

which has rank rk Jπ̂ = dimM .

(3) If M is a smooth manifold and U ⊆ M is an open subset, then the inclusion map
U ↪→M is a smooth embedding, see Proposition 3.9.

We will encounter more examples of smooth immersions, smooth embeddings and
smooth submersions later in the course and in the exercise sheets as well.

To understand more fully what it means for a map to be a smooth embedding, it
is useful to bear in mind some examples of injective smooth maps that are not smooth
embeddings. The next three examples illustrate three rather different ways in which this
can happen.

Example 4.5.

(1) The map
γ : R → R2, t 7→ (t3, 0)

is a smooth map and a topological embedding, but it is not a smooth embedding, because
γ′(0) = 0, see Example 4.4(1).



Section 4.1. Immersions, Submersions, and Embeddings 35

(2) The figure-eight curve: Consider the smooth curve

β : (−π, π) → R2, t 7→
(
sin(2t), sin t

)
.

Its image is a set that looks like a figure-eight in the plane, sometimes called a lemniscate,
see Figure 4.1. It is the locus of points (x, y) ∈ R2 such that x2 = 4y2(1− y2), as one can
easily check.

−1 1

−1

1

0

Figure 4.1: Lemniscate

Note that β is injective, since

β(t1) = β(t2) =⇒ t1 = t2,

and β′(t) ̸= 0 for all t ∈ (−π, π), since

∥β′(t)∥2 =
∥∥(2 cos(2t), cos t)∥∥2 = 4 cos2(2t) + cos2 t ̸= 0.

Hence, β is an injective smooth immersion, but it is not a topological embedding, because
its image is compact in the subspace topology, while its domain is not.

(3) A dense curve on the torus : Let T2 = S1×S1 ⊆ C2 denote the torus, and let α ∈ R\Q.
The map

γ : R → T2, t 7→
(
e2πi t, e2πiαt

)
is a smooth immersion, because γ′(t) never vanishes. It is also injective, because

γ(t1) = γ(t2) =⇒ t1 − t2, αt1 − αt2 ∈ Z =⇒ t1 = t2.

However, γ is not a topological embedding. Indeed, using Dirichlet’s approximation theo-
rem [Lee13, Lemma 4.21], one can show that γ(0) is a limit point of γ(Z) = {γ(n) | n ∈ Z},
while Z has no limit point in R. Finally, it can also be shown that γ(R) is dense in T2,
see [Lee13, Problem 4.4].

Recall : Let F : X → Y be a (not necessarily continuous) map between topological
spaces. We say that F is

(a) an open map if for every open subset U of X, the image F (U) is an open subset
of Y ;

(b) a closed map if for every closed subset C of X, the image F (C) is a closed subset
of Y ;

(c) a proper map if for every compact subset K ⊆ Y , the preimage F−1(K) is a
compact subset of X.
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The following proposition gives a few simple sufficient criteria for an injective immer-
sion to be an embedding.

Proposition 4.6. Let F : M → N be an injective smooth immersion. If any of the
following holds, then F is a smooth embedding.

(a) F is an open map or a closed map.

(b) F is a proper map.

(c) M is compact.

(d) dimM = dimN .

Proof. We first prove the following three claims, which will be then used crucially in the
proof of the statement.

�Claim 1 : Let F : X → Y be a continuous map between topological spaces that is either
open or closed. If F is injective, then it is a topological embedding.

�Proof : Assume that F is open and injective. Then F : X → F (X) is bijective, so
F−1 : F (X) → F exists. If U ⊆ X is open, then (F−1)−1(U) = F (U) is open in Y by
hypothesis, and therefore also open in F (X) by definition of the subspace topology on
F (X). Hence, F−1 is continuous, so that F is a topological embedding.

The proof of the assertion is similar when F is closed and injective.

�Claim 2 (Closed map lemma): Let X be a compact space, let Y be a Hausdorff space,
and let F : X → Y be a continuous map. Then F is a closed map.

�Proof : Let K ⊆ X be a closed subset. Since X is compact, K is also compact, and
since F is continuous, F (K) is also compact. Since Y is Hausdorff, F (K) ⊆ Y is a closed
subset. Thus, F is a closed map.

�Claim 3 : Let X be a topological space and let Y be a locally compact Hausdorff space.
Then every proper continuous map F : X → Y is closed.

�Proof : Let K ⊆ X be a closed subset. To show that F (K) ⊆ Y is closed, we will
show that its complement is open. Let y ∈ Y \ F (K). Since Y is locally compact, y
has an open neighborhood V with compact closure V , and since F is proper, F−1(V ) is
compact. Set E := K ∩F−1(V ) and note that E is a compact set. Since F is continuous,
F (E) is also compact, and since Y is Hausdorff, F (E) is a closed subset of Y . Set
U := V \ F (E) = V ∩

(
Y \ F (E)

)
and observe that U is open neighborhood of y, which

is disjoint from F (K). Hence, Y \ F (E) is open, which implies that F (K) is closed.

We are now ready to prove the statement.

(a) By assumption and by Claim 1, F is a topological embedding. Since it is also a smooth
immersion by assumption, we conclude that F is a smooth embedding.

(b) By assumption and by Claim 3, F is a closed map, so it is a smooth embedding by
(a).

(c) By assumption and by Claim 2, F is a closed map, so it is a smooth embedding by
(a).
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(d) By assumption and by Proposition 4.10(b), F is a local diffeomorphism (see Def-
inition 4.7), and thus an open map by Proposition 4.9(c). Therefore, F is a smooth
embedding by (a).

Comment: There exist smooth embeddings which are neither open nor closed maps, see
[Lee13, Exercise 4.24].

4.2 Local Diffeomorphisms

Definition 4.7.

(a) Let X and Y be topological spaces. A map F : X → Y is called a local homeomor-
phism if every point p ∈ X has a neighborhood U such that F (U) is open in Y and
F |U : U → F (U) is a homeomorphism.

(b) Let M and N be smooth manifolds. A map F : M → N is called a local diffeomor-
phism if every point p ∈M has a neighborhood U such that F (U) is open in N and
F |U : U → F (U) is a diffeomorphism.

The next theorem is the key to the most important properties of local diffeomorphisms.

Theorem 4.8 (Inverse function theorem for manifolds). Let F : M → N be a smooth
map. If p ∈M is a point such that the differential dFp of F at p is invertible, then there
exist connected neighborhoods U0 of p in M and V0 of F (p) in N such that F |U0 : U0 → V0
is a diffeomorphism.

Proof. See [Exercise Sheet 6, Exercise 4].

Proposition 4.9 (Elementary properties of local diffeomorphisms).

(a) Every composition of local diffeomorphisms is a local diffeomorphism.

(b) Every finite product of local diffeomorphisms between smooth manifolds is a local
diffeomorphism.

(c) Every local diffeomorphism is a local homeomorphism and an open map.

(d) The restriction of a local diffeomorphism to an open submanifold is a local diffeo-
morphism.

(e) Every diffeomorphism is a local diffeomorphism.

(f) Every bijective local diffeomorphism is a diffeomorphism.

(g) A map between smooth manifolds is a local diffeomorphism if and only if in a neigh-
borhood of each point of its domain, it has a coordinate representation that is a local
diffeomorphism.

Proof. Exercise! (See also Proposition 2.15.)

Proposition 4.10. Let M and N be smooth manifolds and let F : M → N be a map.
The following statements hold:
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(a) F is a local diffeomorphism if and only if it is both a smooth immersion and a smooth
submersion.

(b) If dimM = dimN and if F is either a smooth immersion or a smooth submersion,
then it is a local diffeomorphism.

Proof. See [Exercise Sheet 6, Exercise 5].

4.3 The Rank Theorem

The most important fact about maps of constant rank is the following consequence of the
inverse function theorem (see Theorem 4.8), which says that a smooth map of constant
rank can be placed locally into a particularly simple canonical form by a change of coor-
dinates. (This is a non-linear version of the canonical form theorem for linear maps; see
[Lee13, Theorem B.20].)

Theorem 4.11 (Rank theorem). Let M and N be smooth manifolds of dimension m and
n, respectively, and let F : M → N be a smooth map of constant rank r. For each p ∈M
there exist smooth charts (U,φ) for M centered at p and (V, ψ) for N centered at F (p)
such that F (U) ⊆ V , in which F has a coordinate representation of the form

F̂ (x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

In particular, if F is a smooth submersion (so that r = n), then this becomes

F̂ (x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn),

while if F is a smooth immersion (so that r = m), then this becomes

F̂ (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Proof. Since the theorem is local, after choosing smooth coordinates we can replace M
and N by open subsets U ⊆ Rm and V ⊆ Rn. The fact that DF (p) has rank r implies
that its matrix has some r × r submatrix with non-zero determinant. By reordering
the coordinates, we may assume that it is the upper left submatrix

(
∂F i

∂xj
(p)
)
for i, j ∈

{1, . . . , r}. We relabel the standard coordinates as

(x, y) = (x1, . . . , xr, y1, . . . , ym−r) in Rm

and
(v, w) = (v1, . . . , vr, w1, . . . , wn−r) in Rn.

By initial translation of the coordinates, without loss of generality we may assume that
p = (0, 0) and F (p) = (0, 0). If we write

F (x, y) =
(
Q(x, y), R(x, y)

)
for some smooth maps Q : U → Rr and R : U → Rn−r, then our hypothesis is that the
matrix

(
∂Qi

∂xj

)
is non-singular at (0, 0).
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Define the function

φ : U → Rm, φ(x, y) =
(
Q(x, y), y

)
,

and observe that its total derivative at (0, 0) is

Dφ(0, 0) =

∂Q
i

∂xj
(0, 0)

∂Qi

∂yj
(0, 0)

O δij

 ,

which is non-singular by virtue of the hypothesis. Therefore, by the inverse function
theorem [Lee13, Theorem C.34], there are connected neighborhoods U0 of (0, 0) and Ũ0 of

φ(0, 0) = (0, 0) such that φ|U0 : U0 → Ũ0 is a diffeomorphism. By shrinking U0 and Ũ0 if

necessary, we may assume that Ũ0 ∋ (0, 0) is an open cube.1 Writing the inverse map as

φ−1(x, y) =
(
A(x, y), B(x, y)

)
for some smooth functions A : Ũ0 → Rr and B : Ũ0 → Rn−r, we see that

(x, y) =
(
φ ◦ φ−1

)
(x, y) = φ

(
A(x, y), B(x, y)

)
=
(
Q
(
A(x, y), B(x, y)

)
, B(x, y)

)
.

Comparing y components shows that B(x, y) = y, and therefore φ−1 has the form
φ−1(x, y) =

(
A(x, y), y

)
. Comparing now x components and taking this into account

also shows that Q
(
A(x, y), y

)
= x, and therefore F ◦ φ−1 has the form(
F ◦ φ−1

)
(x, y) =

(
x, R̃(x, y)

)
,

where the function R̃ : Ũ0 → Rn−r is defined by R̃(x, y) =
(
A(x, y), y

)
. The Jacobian

matrix of F ◦ φ−1 at an arbitrary point (x, y) ∈ Ũ0 is

D(F ◦ φ−1)(x, y) =

 δij O

∂R̃i

∂xj
(x, y)

∂R̃i

∂yj
(x, y)

 .

Since composing with a diffeomorphism does not change the rank of a map, the above
matrix has rank r everywhere in Ũ0. The first r columns are obviously linearly indepen-

dent, so the rank can be r only if ∂R̃i

∂yj
vanish identically on Ũ0, which implies that R̃ is

actually independent of (y1, . . . , ym−r). (This is one reason why we arranged for Ũ0 to be

a cube.) Thus, if we let S(x) = R̃(x, 0), then we have(
F ◦ φ−1

)
(x, y) =

(
x, S(x)

)
. (4.1)

To complete the proof, we need to define an appropriate smooth chart in some neigh-
borhood of F (p) = (0, 0) ∈ V . Consider the open subset

V0 =
{
(v, w) ∈ V | (v, 0) ∈ Ũ0

}
⊆ V

1A closed rectangle in Rk is a set of the form [a1, b1]× . . .× [ak, bk], whereas an open rectangle in Rk is
a set of the form (a1, b1)× . . .× (ak, bk), for real numbers ai < bi. A (closed or open) rectangle is called
a (closed or open) cube if all of its side lengths bi − ai are equal.
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and note that V0 is a neighborhood of (0, 0). Since Ũ0 ∋ (0, 0) = φ(0, 0) is a cube and

F ◦ φ−1 has the form (4.1), it follows that
(
F ◦ φ−1

)
(Ũ0) ⊆ V0 (because (v, w) ∈ Ũ0 ⇒(

F ◦ φ−1
)
(v, w) =

(
v, S(v)

)
∈ V by construction and (v, 0) ∈ Ũ0 by the form of Ũ0), and

hence F (U0) ⊆ V0. Define the function

ψ : V0 → Rn, ψ(v, w) =
(
v, w − S(v)

)
.

This is an open map and a diffeomorphism onto its image, because its inverse is given
explicitly by ψ−1(s, t) =

(
s, t+ S(s)

)
. Thus, (V0, ψ) is a smooth chart. It follows now

immediately from (4.1) that(
ψ ◦ F ◦ φ−1

)
(x, y) = ψ

(
x, S(x)

)
=
(
x, S(x)− S(x)

)
= (x, 0) ,

which was to be proved.

The next corollary can be viewed as a more invariant statement of the rank theorem.
It says that maps of constant rank are precisely the ones whose local behavior is the same
as that of their differentials.

Corollary 4.12. Let F : M → N be a smooth map. Assume that M is connected. Then
the following are equivalent:

(a) For each p ∈ M there exists smooth charts containing p and F (p) in which the
coordinate representation of F is linear.

(b) F has constant rank.

Proof.

(b) ⇒ (a): Follows immediately from the rank theorem.

(a) ⇒ (b): Since every linear map has constant rank, it follows that the rank of F is
constant in a neighborhood of each point, and thus by connectedness it is constant on all
of M .

The rank theorem is a purely local statement. However, it has the following powerful
global consequence.

Theorem 4.13 (Global rank theorem). Let F : M → N be a smooth map of constant
rank.

(a) If F is surjective, then it is a smooth submersion.

(b) If F is injective, then it is a smooth immersion.

(c) If F is bijective, then it is a diffeomorphism.

Proof. Assume that dimM = m, dimN = n and rkF = r.

(a) See the proof of [Lee13, Theorem 4.14(a)] for the details.

(b) Assume that F is not a smooth immersion, so that r < m. By the rank theorem, for
each p ∈M we can choose smooth charts around p and F (p) in which F has the coordinate
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representation F̂ (x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0). Thus, F̂ (0, . . . , 0, ε) =
(0, . . . , 0, 0) for any 0 < ε≪ 1, which shows that F is not injective, a contradiction.

(c) We have the following implications:

F : bijective ====⇒ F : injective & surjective

(a)
====⇒

(b)
F : smooth immersion & smooth submersion

4.10(a)
====⇒ F : local diffeomorphism

4.9(f)
====⇒
F :bijective

F : diffeomorphism.

4.3.1 Applications of the Rank Theorem

1 Applications to Smooth Immersions:

Theorem 4.14 (Local embedding theorem). Let F : M → N be a smooth map. Then F
is a smooth immersion if and only if every point in M has a neighborhood U such that
F |U : U → N is a smooth embedding.

Proof. If every point in M has a neighborhood on which F is a smooth embedding, then
F has full rank everywhere, so it is a smooth immersion.

Conversely, assume that F is a smooth immersion, and let p ∈M . We first claim that
p has a neighborhood on which F is injective. Indeed, by the rank theorem there is an
open neighborhood U1 of p on which F has a coordinate representation of the form

F̂ (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

and thus F |U1 is injective. Now, consider a precompact neighborhood U of p such that
U ⊆ U1. The restriction of F to U is an injective continuous map with compact domain
and Hausdorff codomain, so it is a topological embedding according to Claims 1 and 2
from the proof of Proposition 4.6. Since any restriction of a topological embedding is again
a topological embedding, F |U is both a topological embedding and a smooth immersion,
so it is a smooth embedding.

2 Applications to Smooth Submersions:

Recall : Let π : M → N be a continuous map between topological spaces. A section
of π is a continuous right inverse for π, i.e., a continuous map σ : N → M such that
π ◦ σ = IdN . A local section of π is a continuous map σ : U →M defined on some open
subset U ⊆ N and satisfying the analogous relation π ◦ σ = IdU .

Many of the important properties of smooth submersions follow from the fact that
they admit an abundance of smooth local sections, which we prove below.

Theorem 4.15 (Local section theorem). Let π : M → N be a smooth map. Then π is
a smooth submersion if and only if every point of M is in the image of a smooth local
section of π.
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Proof. Set m = dimM and n = dimN .

“⇒”: Fix p ∈ M and set q = π(p) ∈ N . By the rank theorem we can choose smooth
coordinates (x1, . . . , xm) centered at p and (y1, . . . , yn) centered at q in which π has the
coordinate representation

π(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn) .

If 0 < ε≪ 1, then the coordinate cube

Cε :=
{
x
∣∣ |xi| < ε, 1 ≤ i ≤ m

}
is a neighborhood of p whose image under π is the cube

C ′
ε :=

{
y
∣∣ |yi| < ε, 1 ≤ i ≤ n

}
.

The map σ : C ′
ε → Cε whose coordinate representation is

σ(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0)

is a smooth local section of π satisfying σ(q) = p, see Figure 4.2.

“⇐”: Given p ∈ M , let σ : U → M be a smooth local section of π such that σ(q) = p,
where q = π(σ(q)) = π(p) ∈ N . The equation π ◦ σ = IdU implies that dπp ◦ dσq = IdTqN

by Proposition 3.7(b), which in turn implies that dπp is surjective. Since p ∈ M was
arbitrary, we conclude that π is a smooth submersion.

Figure 4.2: Local section of a smooth submersion

Recall : If X is a topological space, Y is a set, and π : X → Y is a surjective map, then
the quotient topology on Y determined by π is defined by declaring a subset V ⊆ Y to
be open if π−1(V ) is open in X. If X and Y are topological spaces, a map π : X → Y is
called a quotient map if it is surjective and continuous and Y has the quotient topology
determined by π.

Proposition 4.16. Let π : M → N be a smooth submersion. Then π is an open map.
Moreover, if it is surjective, then it is a quotient map.

Proof. The second assertion follows from the first one, because a surjective, open and
continuous map is a quotient map by [Lee13, Exercise A.29 and Theorem A.38].

It remains to prove that π is an open map. To this end, let W be an open subset of
M and let q ∈ π(W ). For any p ∈ W such that π(p) = q, by Theorem 4.15 there is a
neighborhood U of q on which there exists a smooth local section σ : U → M of π with
σ(q) = p. For each y ∈ σ−1(W ), the fact that σ(y) ∈ W implies that y = π

(
σ(y)

)
∈ π(W ).

Thus, σ−1(W ) is an open neighborhood of q contained in π(W ), which implies that π(W )
is open.

The next three theorems provide important tools that are frequently used when
studying submersions and demonstrate that surjective smooth submersions play a role
in smooth manifold theory analogous to the quotient maps in topology.
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Theorem 4.17 (Characteristic property of surjective smooth submersions). Let π : M →
N be a surjective smooth submersion. For any smooth manifold P , a map F : N → P is
smooth if and only if F ◦ π : M → P is smooth.

M

N P

F◦π
π

F

Proof. See [Exercise Sheet 7, Exercise 3].

⇝ [Exercise Sheet 7, Exercise 4] explains the sense in which the above property is
“characteristic”.

⇝ [Exercise Sheet 7, Exercise 5] shows that the converse of the Theorem 4.17 is false.

Theorem 4.18 (Pushing smoothly to the quotient). Let π : M → N be a surjective
smooth submersion. If P is a smooth manifold and if F : M → P is a smooth map that is
constant on the fibers of π, then there exists a unique smooth map F̃ : N → P such that
F̃ ◦ π = F .

M

N P

F
π

F̃

Proof. See [Exercise Sheet 7, Exercise 6].

Theorem 4.19 (Uniqueness of smooth quotients). Let π1 : M → N1 and π2 : M → N2 be
surjective smooth submersions that are constant on each other’s fibers. Then there exists
a unique diffeomorphism F : N1 → N2 such that F ◦ π1 = π2.

M

N1 N2

π2π1

F

Proof. See [Exercise Sheet 7, Exercise 7].





CHAPTER 5

SUBMANIFOLDS

Many familiar manifolds appear naturally as subsets of other manifolds. We have already
seen that open subsets of smooth manifolds can be viewed as smooth manifolds in their
own right. However, there are many interesting examples beyond the open ones. In this
chapter we explore smooth submanifolds, which are smooth manifolds that are subsets of
other smooth manifolds.

5.1 Embedded Submanifolds

Definition 5.1. LetM be a smooth manifold. An embedded submanifold of M is a subset
S ⊆ M that is a topological manifold in the subspace topology, endowed with a smooth
structure with respect to which the inclusion map S ↪→M is a smooth embedding.

If S is an embedded submanifold ofM , then the difference dimM−dimS is called the
codimension of S in M , and the containing manifold M is called the ambient manifold
for S.

For instance, an embedded submanifold of codimension 1 is called an embedded hy-
persurface. The empty set ∅ is an embedded submanifold of any dimension. The easiest
embedded submanifolds to understand are those of codimension 0, as the following result
demonstrates.

Proposition 5.2 (Open submanifolds). Let M be a smooth manifold. The embedded
submanifolds of codimension 0 in M are exactly the open submanifolds.

Proof. If U ⊆ M is an open submanifold, then we have already seen that U is a smooth
manifold of dimU = dimM (Example 1.10(4)) and that the inclusion map ι : U ↪→M is
a smooth embedding (Example 4.4(3)). Therefore, U ⊆ M is an embedded manifold of
codimension 0.

Conversely, if U ⊆M is an embedded submanifold of codimension 0, then the inclusion
ι : U ↪→M is a smooth embedding. Since dimU = dimM , it is actually a local diffeomor-
phism by Proposition 4.10(b), and thus an open map by Proposition 4.9(c). Therefore,
U is an open subset of M .

45
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Proposition 5.3 (Images of embeddings as submanifolds). Let F : N →M be a smooth
embedding and set S := F (N). With the subspace topology, S is a topological manifold,
and it has a unique smooth structure making it into an embedded submanifold of M with
the property that F is a diffeomorphism onto its image.

Proof. If we give S the subspace topology that it inherits from M , then the assumption
that F is an embedding means that F can be considered as a homeomorphism from N
onto S, and thus S is a topological manifold. We now give S a smooth structure by
taking the smooth charts to be those of the form

(
F (U), φ ◦ F−1

)
, where (U,φ) is a

smooth chart for N . Note that the smooth compatibility of these charts follows from the
smooth compatibility of the corresponding charts for N . With this smooth structure on
S, the map F is a diffeomorphism onto its image (essentially by definition), and this is
obviously the only smooth structure with this property. The inclusion map ι : S ↪→M is
equal to the composition of a diffeomorphism followed by a smooth embedding

S N M ,F−1 F

so it is a smooth embedding itself by [Exercise Sheet 6, Exercise 1(a)(iii)].

Since every embedded submanifold is the image of a smooth embedding (namely its
own inclusion map), Proposition 5.3 shows that embedded submanifolds are exactly the
images of smooth embeddings of smooth manifolds.

Example 5.4 (Graphs as embedded submanifolds). Let M be a smooth m-manifold and
let N be a smooth n-manifold. Let U ⊆ M be an open subset and let f : U → N be a
smooth map. Then the graph of f ,

Γ(f) :=
{
(x, y) ∈M ×N | x ∈ U, y = f(x)

}
,

is an embeddedm-dimensional submanifold ofM×N diffeomorphic to U . Indeed, consider
the map

γf : U →M ×N, x 7→
(
x, f(x)

)
.

It is a smooth map by [Exercise Sheet 3, Exercise 4(b)] whose image is Γ(f). Since the
projection πM : M ×N →M satisfies(

πM ◦ γf
)
(x) = x = IdU(x) for all x ∈ U,

the composition d(πM)(x,f(x)) ◦ d(γf )x is the identity on TxU ∼= TxM for each x ∈ U .
Thus, d(γf )x is injective, so γf is a smooth immersion. It is also a homeomorphism onto
its image, since πM |Γ(f) is a continuous inverse for it. Therefore, Γ(f) is an embedded
submanifold of M ×N diffeomorphic to U by Proposition 5.3.

An embedded submanifold S ⊆ M is said to be properly embedded if the inclusion
S ↪→ M is a proper map. It will be shown in [Exercise Sheet 8, Exercise 1(b)] that
an embedded submanifold S ⊆ M is properly embedded if and only if S is a closed
subset of M . Consequently, every compact embedded submanifold is properly embedded,
since compact subspaces of Hausdorff spaces are closed. We refer to [Exercise Sheet 8,
Exercises 1(d), 2 and 3 ] and [Exercise Sheet 9, Exercise 6 ] for further examples of properly
embedded submanifolds.
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5.1.1 Slice Charts for Embedded Submanifolds

Definition 5.5.

(a) Given an open subset U ⊆ Rn and an integer k ∈ {0, . . . , n}, a k-dimensional slice of
U (or simply a k-slice) is any subset of the form

S =
{
(x1, . . . , xk, xk+1, . . . , xn) ∈ U

∣∣ xk+1 = ck+1, . . . , xn = cn
}

for some constants ck+1, . . . , cn ∈ R (often taken to be zero). (When k = 0, we have
S = {point} ⊆ U , while when k = n, then S = U .)

Note that every k-slice is homeomorphic to an open subset of Rk. (Sometimes it is
convenient to consider slices defined by setting some subset of the coordinates other than
the last ones equal to constants.)

(b) Let M be a smooth manifold and let (U,φ) be a smooth chart for M . If S is a subset
of U such that φ(S) is a k-slice of φ(U) ⊆ Rn, then we say that S is a k-slice of U .

(c) Given a smooth manifold M , a subset S ⊆ M and an integer k ∈ N, we say that
S satisfies the local k-slice condition if each point of S is contained in the domain of a
smooth chart (U,φ) for M such that S ∩ U is a single k-slice in U . Any such chart is
called slice chart for S in M , and the corresponding coordinates (x1, . . . , xn) are called
slice coordinates.

Theorem 5.6 (Local slice criterion for embedded submanifolds). Let M be a smooth
n-manifold. If S is an embedded k-dimensional submanifold of M , then S satisfies the
local k-slice condition. Conversely, if S ⊆ M is a subset that satisfies the local k-slice
condition, then with the subspace topology, S is a topological manifold of dimension k, and
it has a smooth structure making it into a k-dimensional embedded submanifold of M .

Proof.

“⇒”: Fix p ∈ S. Since the inclusion map ι : S ↪→M is in particular a smooth immersion,
by the rank theorem there are smooth charts (U,φ) for S (in its given smooth manifold
structure) and (V, ψ) for M , both centered at p, in which the inclusion map ιU : U ↪→ V
has the coordinate representation

(x1, . . . , xk) 7→ (x1, . . . , xk, 0, . . . , 0).

Now, choose 0 < ε≪ 0 so that both U and V contain coordinate balls U0 ⊆ U and V0 ⊆ V
of radius ε > 0 centered at p. It follows that U0

∼= ι(U0) is exactly a single slice in V0
(using the above local description). Since S ⊆M has the subspace topology and since U0

is open in S, there is an open subsetW ⊆M such that U0 = W ∩S. Setting V1 := W ∩V0,
we obtain a smooth chart (V1, ψ|V1) for M containing p such that V1 ∩ S = U0 ∩ V0 = U0,
which is a single slice of V1 (as U0 is a single slice of V0).

“⇐”: With the subspace topology, S is Hausdorff and second-countable, because both
properties are inherited by subspaces. To show that S is locally Euclidean, we construct
an atlas. The basic idea of the construction is that if (x1, . . . , xn) are slice coordinates for
S in M , then we can use (x1, . . . , xk) as local coordinates for S.
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Figure 5.1: A chart for a subset satisfying the k-slice condition

Let π : Rn → Rk be the projection onto the first k-coordinates. Let (U,φ) be a slice chart
for S in M , and define

V = U ∩ S, V̂ = (π ◦ φ)(V ), ψ = (π ◦ φ)|V : V → V̂ .

By definition of slice charts, φ(V ) is the intersection of φ(U) with a certain k-slice A ⊆ Rn

defined by setting xk+1 = ck+1, . . . , xn = cn, and therefore φ(V ) is open in A. Since

π|A : A → Rk is a diffeomorphism, it follows that V̂ is open in Rk. Moreover, ψ is a
homeomorphism, because it has a continuous inverse given by (φ−1 ◦ j)|V̂ , where

j : Rk → Rn, j(x1, . . . , xk) = (x1, . . . , xk, ck+1, . . . , cn).

Thus, S is a topological manifold.
We now check that the charts constructed above are smoothly compatible. Let (U,φ)

and (U ′, φ′) be two slice charts for S inM and let (V, ψ) and (V ′, ψ′) be the corresponding
charts for S. The transition map is given by

ψ′ ◦ ψ−1 = π ◦ φ′ ◦ φ−1 ◦ j,

which is smooth by Proposition 2.11(d) as a composite of four smooth maps. Hence, the
atlas we have constructed is actually a smooth atlas (see Remark 1.5), and it defines a
smooth structure on S by Proposition 1.8(a). In terms of a slice chart (U,φ) for S in M
and the corresponding chart (V, ψ) for S, the inclusion map ι : S ↪→ M has a coordinate
representation of the form

(x1, . . . , xk) 7→ (x1, . . . , xk, ck+1, . . . , cn),

which is a smooth immersion. Since the inclusion map is also a topological embedding,
we are done.

Notice that the local slice condition for S ⊆ M is a condition on the subset S only;
it does not presuppose any particular topology or smooth structure on S. According to
[Exercise Sheet 9, Exercise 1], the smooth manifold structure constructed in Theorem 5.6
is the unique one in which S can be considered as a submanifold, so a subset satisfying
the local slice condition is an embedded submanifold in only one way.

5.1.2 Level Sets

Let Φ: M → N be a map between sets. Recall that if c ∈ N , then Φ−1(c) is called a level
set of Φ. In the special case when N = Rk and c = 0, the level set Φ−1(c) is usually called
the zero set of Φ.

Definition 5.7. Let Φ: M → N a smooth map.

• A point p ∈ M is called regular point of Φ if dΦp : TpM → TΦ(p)N is surjective;
otherwise, we say that p is a critical point of Φ.
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• A point c ∈ N is called a regular value of Φ if every point of the level set Φ−1(c) is
a regular point; otherwise, we say that c is a critical value of Φ. (In particular, if
Φ−1(c) = ∅, then c is a regular value.)

• A level set Φ−1(c) is called a regular level set if c is a regular value of Φ.

Remark 5.8. Let Φ: M → N be a smooth map.

(1) If dimM < dimN , then every point of M is critical point of Φ.

(2) Every point of M is regular if and only if Φ is a smooth submersion.

(3) By Lemma 4.3, the set of regular points of Φ is an open subset of M (but may well
be empty).

Consider the three smooth functions

Θ: R2 → R, (x, y) 7→ x2 − y,

Φ: R2 → R, (x, y) 7→ x2 − y2,

Ψ: R2 → R, (x, y) 7→ x2 − y3.

Although the zero set Θ−1(0) of Θ is an embedded submanifold of R2, it will be shown in
[Exercise Sheet 8, Exercise 3(b)] and [Exercise Sheet 9, Exercise 5(c)], respectively, that
neither the zero set Φ−1(0) of Φ nor the zero set Ψ−1(0) of Ψ is an embedded submanifold
of R2. Hence, it is fairly easy to find level sets of smooth functions that are not smooth
submanifolds. In fact, without further assumptions on the smooth function, the situation
is about as bad as could be imagined; namely, according to Theorem 2.23, every closed
subset ofM can be expressed as the zero set of a smooth non-negative real-valued function.
However, using the rank theorem, we can prove the following result:

Theorem 5.9 (Constant-rank level set theorem). Let Φ: M → N be a smooth map of
constant rank r. Each level set of Φ is a properly embedded submanifold of codimension r
in M .

In particular, if Φ is a smooth submersion, then each level set of Φ is a properly
embedded submanifold of M of codimension r = dimN .

Proof. Set m = dimM , n = dimN and k = m− r. Pick c ∈ N and set S = Φ−1(c). By
the rank theorem, for each p ∈ S there are smooth charts (U,φ) centered at p and (V, ψ)
centered at c = Φ(p) in which Φ has a coordinate representation of the form

Φ̃(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

Therefore, S ∩ U = Φ−1(c) ∩ U is the slice{
(x1, . . . , xr, xr+1, . . . , xm) ∈ U | x1 = . . . = xr = 0

}
.

In conclusion, S satisfies the local (k = m − r)-slice condition, so it is an embedded
submanifold of dimension k by Theorem 5.6. It is also closed in M by continuity of Φ, so
it is actually properly embedded in M by [Exercise Sheet 8, Exercise 1(b)].
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Corollary 5.10 (Regular level set theorem). Every regular level set of a smooth map
between smooth manifolds is a properly embedded submanifold of the domain whose codi-
mension is equal to the dimension of the codomain.

Proof. Let Φ: M → N be a smooth map and let c ∈ N be a regular value of Φ. By
Remark 5.8(3) the set

U =
{
p ∈M | rk(dΦp) = dimN

}
⊆M

is open in M , and contains Φ−1(c) by assumption. Thus, Φ|U : U → N is a smooth
submersion, so Φ−1(c) is an embedded submanifold of U by Theorem 5.9. It follows now
from Proposition 5.2 and [Exercise Sheet 6, Exercise 1] that

Φ−1(c) ↪→ U ↪→M

is a smooth embedding (as a composite of smooth embeddings), so Φ−1(c) is an embedded
submanifold of M . It is also closed in M by continuity of Φ, so it is actually properly
embedded in M by [Exercise Sheet 8, Exercise 1(b)].

Not all embedded submanifolds can be expressed as level sets of smooth submersions.
However, the next proposition shows that every embedded submanifold is at least locally
of this form.

Proposition 5.11. Let S be a subset of a smooth m-manifold M . Then S is an embedded
k-submanifold of M if and only if every point of S has a neighborhood U in M such that
U ∩ S is a level set of a smooth submersion.

Proof. See [Exercise Sheet 8, Exercise 4].

If S ⊆ M is an embedded submanifold, then a smooth map Φ: M → N such that S
is a regular level set of Φ is called a defining map for S. In the special case N = Rm−k

it is usually called a defining function for S. For several examples, see [Exercise Sheet 8 ]
and [Exercise Sheet 9 ]. More generally, if U ⊆ M is an open subset and Φ: U → N is a
smooth map such that S∩U is a regular level set of Φ, then Φ is called a local defining map
(or local defining function) for S. Proposition 5.11 says that every embedded submanifold
admits a local defining map in a neighborhood of each of its points.

Figure 5.2: An embedded submanifold is locally a level set

5.2 Immersed Submanifolds

Definition 5.12. Let M be a smooth manifold. An immersed submanifold of M is a
subset S ⊆ M endowed with a topology (not necessarily the subspace topology) with
respect to which it is a topological manifold, and with a smooth structure with respect to
which the inclusion map S ↪→ M is (an injective) smooth immersion. The codimension
of S in M is defined as dimM − dimS.

Observe that every embedded submanifold is an immersed submanifold, but the con-
verse fails in general; see [Exercise Sheet 9, Exercise 5(b)] for a counterexample.



Section 5.2. Immersed Submanifolds 51

Proposition 5.13 (Images of immersions as submanifolds). Let F : N → M be an in-
jective smooth immersion. Set S := F (N). Then S has a unique topology and smooth
structure such that it is an immersed submanifold of M and such that F : N → S is a
diffeomorphism onto its image.

Proof. The proof is very similar to that of Proposition 5.3, except that now we also have
to define the topology on S.

We give S a topology by declaring a subset U ⊆ S to be open if and only if F−1(U) ⊆ N
is open, and then we give it a smooth structure by taking the smooth charts to be those
of the form

(
F (U), φ ◦ F−1

)
, where (U,φ) is a smooth chart for N . (As in the proof

of Proposition 5.3, the smooth compatibility of these charts follows from the smooth
compatibility of the corresponding charts forN .) With this topology and smooth structure
on S, the map F is a diffeomorphism onto its image, and these are the only topology and
smooth structure on S with this property. The inclusion map ι : S ↪→ M can be written
as the composition

S N M,F−1 F

where the first map is a diffeomorphism and the second map is a smooth immersion, so ι
is itself a smooth immersion by [Exercise Sheet 6, Exercise 1(a)(ii)].

Since every immersed submanifold is the image of an injective smooth immersion
(namely its own inclusion map), Proposition 5.13 shows that immersed submanifolds are
exactly the images of injective smooth immersions of smooth manifolds.

Example 5.14. The figure-eight curve (lemniscate) from Example 4.5(2) is the image of
the injective smooth immersion

β : (−π, π) → R2, t 7→
(
sin(2t), sin t

)
(which is not an embedding), so it is an immersed submanifold of R2 when given an
appropriate topology and smooth structure. As a smooth manifold, it is diffeomorphic
to R. It is not an embedded submanifold of R2, because it does not have the subspace
topology. In fact, the image set β

(
(−π, π)

)
cannot be made into an embedded submanifold

of R2 even if we are allowed to change its topology and smooth structure, see Exercises
1, 2 and 5(a) from [Exercise Sheet 9 ].

Remark 5.15. In general, smooth (immersed) submanifolds can be closed without being
embedded (as is, for example, the figure-eight curve from Example 5.14) or embedded
without being closed (as is, for example, the open unit ball Bn in Rn).

The following observation is sometimes useful when thinking about the topology of an
immersed submanifold.

Comment: Let M be a smooth manifold and let S be an immersed submanifold of M .
Then every subset of S that is open in the subspace topology is also open in its given
submanifold topology (that is, the submanifold topology on an immersed submanifold is
finer than the subspace topology); and the converse is true if and only if S is embedded.
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Given a smooth submanifold that it is only known to be immersed, it is often useful
to have simple criteria that guarantee that it is embedded. The next proposition gives
several such criteria.

Proposition 5.16. Let M be a smooth manifold and let S be an immersed submanifold
of M . If any of the following conditions holds, then S is embedded.

(a) The inclusion map ι : S ↪→M is proper.

(b) S is compact.

(c) codimM S = 0.

Proof. Since S is an immersed submanifold of M , the inclusion map ι : S ↪→ M is an
injective smooth immersion. If any of the above conditions holds, then Proposition 4.6
implies that ι is a smooth embedding; in particular, ι(S) = S is endowed with the
subspace topology inherited from M . Therefore, in any of these three cases, S is an
embedded submanifold of M .

Even though many immersed submanifolds are not embedded, such as the one from
Example 5.14, the next result shows that the local structure of an immersed submanifold
is the same as that of an embedded one.

Proposition 5.17 (Immersed submanifolds are locally embedded). If M is a smooth
manifold and if S is an immersed submanifold of M , then for each p ∈ S there exists a
neighborhood U of p in S that is an embedded submanifold of M .

Proof. By assumption, ι : S ↪→M is a smooth immersion. By Theorem 4.14 every p ∈ S
has a neighborhood U in S such that ι|U : U ↪→ M is a smooth embedding, so Proposi-
tion 5.3 yields the assertion.

5.3 The Tangent Space to a Submanifold

We discuss here the tangent space to submanifolds. If S is a submanifold of Rn, we
intuitively think of the tangent space TpS at a point p ∈ S as a subspace of the tangent
space TpRn. Similarly, the tangent space to a smooth submanifold of an abstract smooth
manifold can be viewed as a subspace of the tangent space to the ambient manifold, once
we make appropriate identifications.

LetM be a smooth manifold and let S be an immersed or embedded submanifold ofM .
Since the inclusion map ι : S ↪→M is (at least) a smooth immersion, at each point p ∈ S
we have an injective linear map dιp : TpS ↪→ TpM . In terms of derivations, this injection
works in the following way: for any vector v ∈ TpS, the image vector ṽ = dιp(v) ∈ TpM
acts on smooth functions on M by

ṽf = dιp(v)(f) = v(f ◦ ι) = v
(
f
∣∣
S

)
.

We usually identify TpS with its image dιp(TpS) under dιp, thereby thinking of TpS as a
certain linear subspace of TpM . This identification makes sense regardless of whether S
is immersed or embedded.

There are several alternative ways of characterizing TpS as a subspace of TpM . The
first one is the most general; it is just a straightforward generalization of Proposition 3.16.
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Proposition 5.18. Let M be a smooth manifold, let S ⊆M be an immersed or embedded
submanifold, and let p ∈ S. A vector v ∈ TpM is in TpS if and only if there exists a
smooth curve γ : J → M whose image is contained in S, and which is also smooth as a
map into S, such that 0 ∈ J , γ(0) = p and γ′(0) = v.

Proof. See [Exercise Sheet 9, Exercise 3].

The next proposition gives a useful way to characterize TpS in the embedded case.
However, according to [Lee13, Problem 5.20], this does not work in the non-embedded
case; see the Remark after the solution of [Exercise Sheet 9, Exercise 3(b)] for a coun-
terexample (relying on Example 4.5(2)).

Proposition 5.19. Let M be a smooth manifold, let S ⊆M be an embedded submanifold
of M and let p ∈ S. As a subspace of TpM , the tangent space TpS is characterized by

TpS =
{
v ∈ TpM | vf = 0 whenever f ∈ C∞(M) with f |S = 0

}
.

Proof. Pick v ∈ TpS ⊆ TpM . Then v = dιp(w) for some w ∈ TpS, where ι : S ↪→ M is
the inclusion map. If f ∈ C∞(M) with f |S = 0, then vf = dιp(w)(f) = w

(
f |S
)
= 0.

Conversely, if v ∈ TpM satisfies vf = 0 whenever f vanishes on S, then we have to
show that v = dιp(w) for some w ∈ TpS. Let (x1, . . . , xn) be slice coordinates for S in
some neighborhood U of p, so that

U ∩ S =
{
(x1, . . . , xn) ∈ U | xk+1 = . . . = xn = 0

}
,

and (x1, . . . , xk) are coordinates for U ∩ S. Since the inclusion map ι : U ∩ S ↪→ M has
the coordinate representation

ι(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0)

in these coordinates (see the proof of Theorem 5.6), it follows that TpS ∼= dιp(TpS) is
exactly the subspace of TpM spanned by

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xk

∣∣∣∣
p

.

If we write the coordinate representation of v ∈ TpM as

v =
n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

,

then v ∈ TpS if and only if vj = 0 for all j > k.
Let φ be a smooth bump function supported in U that is equal to 1 in a neighborhood

of p. Choose an index j > k and consider the function f(x) = φ(x)xj, extended to be
zero on M \ suppφ. Then f vanishes identically on S, so

0 = vf =
n∑
i=1

vi
∂(φ(x)xj)

∂xi
(p)

product rule
=======
+properties

vj.

Thus, v ∈ TpS, as desired.
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Finally, if an embedded submanifold is characterized by a defining map, then this map
gives a concise characterization of its tangent space at each point; see [Exercise Sheet 9,
Exercise 4] and recall also Proposition 5.11.

Exercise 5.20: Let S ⊆M be a level set of a smooth map Φ: M → N of constant rank.
Show that TpS = ker dΦp for every p ∈ S.

Given a smooth manifoldM and a subset S ofM , it is important to bear in mind that
there are two very different questions one can ask. The simplest question is whether S is
an embedded manifold. Since embedded submanifolds are exactly those subsets satisfying
the local slice condition, this is simply a question about the subset S itself: either it is
an embedded submanifold or it is not, and if so, then the topology and smooth structure
making it into an embedded submanifold are uniquely determined according to [Exercise
Sheet 9, Exercise 1].

A more subtle question is whether S can be an immersed submanifold. In this case,
neither the topology nor the smooth structure is known in advance, so one needs to ask
whether there exist any topology and smooth structure on S making it into an immersed
submanifold. This question is not always straightforward to answer, and it can be es-
pecially tricky to prove that S is not an immersed submanifold. A typical approach is
to assume that it is, and then use one or more of the following phenomena to derive a
contradiction:

• At each p ∈ S, the tangent space TpS is a subspace of TpM , with the same dimension
at each point.

• Each vector tangent to S is the velocity vector of some smooth curve in S.

• Each vector tangent to S annihilates every smooth function that is constant on S.

Here is an example of how this can be done; another one is given in [Exercise Sheet 9,
Exercise 5(c)].

Example 5.21. Consider the subset

S =
{
(x, y) ∈ R2 | y = |x|

}
⊆ R2.

It is easy to check that S \ {(0, 0)} is an embedded 1-dimensional submanifold of R2, so if
S itself is an immersed submanifold at all, then it must be 1-dimensional. Suppose there
were some smooth manifold structure on S making it into an immersed submanifold. Then
T(0,0)S would be a 1-dimensional subspace of T(0,0)R2, so by Proposition 5.18 there would
be a smooth curve γ : (−ε, ε) → R2 whose image is in S, and that satisfies γ(0) = (0, 0)
and γ′(0) ̸= 0. Writing γ(t) =

(
x(t), y(t)

)
, we see that y(t) takes a global minimum at

t = 0, so y′(0) = 0. On the other hand, since every point (x, y) ∈ S satisfies x2 = y2, we
have x2(t) = y2(t) for all t ∈ (−ε, ε). Differentiating twice and setting t = 0, we conclude
that 2x′(0) = 2y′(0) = 0, which is a contradiction. Thus, there is no such smooth manifold
structure on S.



CHAPTER 6

VECTOR BUNDLES

In Section 3.4 we saw that the tangent bundle of a smooth manifold has a natural structure
as a smooth manifold in its own right. The natural coordinates we constructed on TM
make it look locally like the Cartesian product of an open subset of Mn with Rn. This
kind of structure arises quite frequently – a collection of vector spaces, one for each point
in M , glued together in a way that looks locally like the Cartesian product of an open
subset of Mn with Rn, but globally may be “twisted”. Such structures are called vector
bundles and will be briefly discussed in this chapter.

There is a deep and extensive body of theory about vector bundles on manifolds,
which we will not touch in this course. We introduce them primarily in order to have
a convenient language for talking about the tangent bundle and structures like it; see
Chapter 7 and Chapter 8.

6.1 Vector Bundles

Definition 6.1. Let M be a topological space. A (real) vector bundle of rank k over M
is a topological space E together with a continuous surjective map π : E →M satisfying
the following conditions:

(i) For each p ∈ M , the fiber Ep = π−1(p) over p is endowed with the structure of a
k-dimensional R-vector space.

(ii) For each p ∈ M , there exists a neighborhood U of p in M and a homeomorphism
Φ: π−1(U) → U × Rk (called a local trivialization of E over U), satisfying the
following conditions (see Figure 6.1):

� πU ◦ Φ = π, where πU : U × Rk → U is the projection.

� For each q ∈ U , the restriction of Φ to Eq is an R-vector space isomorphism
from Eq to {q} × Rk ∼= Rk.

The space E is called the total space of the bundle, M is called its base, and π is called
its projection.

55
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If M and E are smooth manifolds, π is a smooth map, and the local trivializations
can be chosen to be diffeomorphisms, then E is called a smooth vector bundle over M . In
this case, any local trivialization that is diffeomorphism onto its image is called a smooth
local trivialization.

Figure 6.1: A local trivialization of a vector bundle

Definition 6.2. If there exists a local trivialization of E over all of M , called a global
trivialization of E, then E is called a trivial bundle. In this case, E itself is homeomorphic
to the product space M × Rk.

If E →M is a smooth vector bundle that admits a smooth global trivialization, then
we say that E is smoothly trivial . In this case, E is diffeomorphic to M × Rk, not just
homeomorphic (as in previous case).

Example 6.3.

(1) Product bundles : Given any topological space M , the product space E = M × Rk

with the map π = πM : M × Rk → M as its projection is a rank-k vector bundle over
M . Any such bundle, called a product bundle, is clearly trivial (with the identity map
Φ = IdE : M ×Rk →M ×Rk as a global trivialization). If M is a smooth manifold, then
the (smooth) product bundle M × Rk is smoothly trivial.

(2) The Möbius bundle: see [Lee13, Example 10.3].

Proposition 6.4 (The tangent bundle of a vector bundle). LetM be a smooth n-manifold
and let TM be its tangent bundle. With its standard projection map π : TM → M ,
its natural vector space structure on each fiber, and the topology and smooth structure
constructed in Proposition 3.12, π : TM → M is a smooth vector bundle of rank n over
M .

Proof. Given any smooth chart (U,φ) for M with coordinate functions (xi), define a map

Φ: π−1(U) → U × Rk, vi
∂

∂xi

∣∣∣∣
p

7→
(
p, (v1, . . . , vn)

)
.

This is linear on the fibers and satisfies πU ◦ Φ = π. The composite map

π−1(U) U × Rk φ(U)× Rk ,Φ ϕ◦IdRk

is equal to the coordinate map φ̃ : π−1(U) → φ(U)×Rk constructed in Proposition 3.12.
Since both φ̃ and φ × IdRk are diffeomorphisms, so is Φ. Therefore, Φ satisfies all the
conditions for a smooth local trivialization.

Any bundle that is not trivial requires more than one local trivialization. The next
lemma shows that the composition of two smooth local trivializations has a simple form
where they overlap.
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Lemma 6.5. Let π : E →M be a smooth vector bundle of rank k over M . Suppose that

Φ: π−1(U) → U × Rk and Ψ: π−1(V ) → V × Rk

are two smooth local trivializations of E with U ∩V ̸= ∅. Then there exists a smooth map

τ : U ∩ V → GL(k,R),

called the transition function between the smooth local trivializations Φ and Ψ, such that
the composition

Φ ◦Ψ−1 : (U ∩ V )× Rk → (U ∩ V )× Rk

has the form (
Φ ◦Ψ−1

)
(p, v) =

(
p, τ(p) · v

)
.

Proof. Note that the following diagram commutes:

(U ∩ V )× Rk π−1(U ∩ V ) (U ∩ V )× Rk

U ∩ V

π1

Ψ Φ

π
π1=πU∩V

and thus π1 ◦ (Φ ◦Ψ−1) = π1, which means that(
Φ ◦Ψ−1

)
(p, v) =

(
p, σ(p, v)

)
for some smooth map σ : (U ∩ V )× Rk → Rk.(
(p, v) ∈ (U ∩ V ) × Rk ⇝ (Φ ◦ Ψ−1)(p, v) = (q, w) ∈ (U ∩ V ) × Rk ⇝ q = p and
w = w(p, v) =: σ(p, v)

)
.

Moreover, for each fixed p ∈ U ∩V , the map v 7→ σ(p, v) is an invertible linear map (since
both Φ|Ep and Ψ|Ep are R-linear isomorphisms), so there is an invertible k × k matrix
τ(p) such that σ(p, v) = τ(p) · v. It remains to show that the map τ : U ∩ V → GL(k,R)
is smooth; this is [Exercise Sheet 10, Exercise 1(b)].

Vector bundles are often most easily described by giving a collection of vector spaces,
one for each point of the base manifold. In order to make such a set into a vector bundle,
we would first have to construct a manifold topology and a smooth structure on the
disjoint union of all the vector spaces, and then construct the local trivializations and
show that they have the requisite properties. The next lemma provides a shortcut (cf.
Lemma 1.11) by showing that it is sufficient to construct the local trivializations, as long
as they overlap with smooth transition functions. (See [Exercise Sheet 10, Exercise 2] for
a stronger form of the result.)

Lemma 6.6 (Vector bundle chart lemma). Let M be a smooth manifold. Suppose that
for each p ∈ M we are given an R-vector space Ep of some fixed dimension k. Set
E :=

⊔
p∈M Ep and consider the map π : E →M, v ∈ Ep 7→ p ∈M . Suppose furthermore

that we are given the following data:

(i) an open cover {Uα}α∈A of M ,
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(ii) for each α ∈ A, a bijective map Φα : π
−1(Uα) → Uα × Rk whose restriction to each

Ep is an R-vector space isomorphism from Ep to {p} × Rk ∼= Rk,

(iii) for each α, β ∈ A with Uα ∩ Uβ ̸= ∅, a smooth map ταβ : Uα ∩ Uβ → GL(k,R) such
that the composition

Φα ◦ Φ−1
β : (Uα ∩ Uβ)× Rk → (Uα ∩ Uβ)× Rk

has the form (
Φα ◦ Φ−1

β

)
(p, v) =

(
p, ταβ(p, v)

)
.

Then E has a unique topology and smooth structure making it into a smooth manifold
and a smooth vector bundle of rank k over M , with π as projection and

{
(Uα,Φα)

}
α∈A as

smooth local trivializations.

Proof. For the details of the proof, which relies essentially on Lemma 1.11, we refer to
[Lee13, Lemma 10.6].

Here are some examples showing how the vector bundle chart lemma can be used to
construct new vector bundles from old ones.

Example 6.7 (Whitney sums). Let M be a smooth manifold. Let π′ : E ′ → M and
π′′ : E ′′ →M be two smooth vector bundles of ranks k′ and k′′, respectively, over M . We
will construct a new smooth vector bundle π : E → M of rank k′ + k′′ over M , denoted
by E ′ ⊕ E ′′ and called the Whitney sum of E ′ and E ′′, whose fiber over each p ∈ M is
the direct sum Ep := E ′

p ⊕ E ′′
p , which is a (k′ + k′′)-dimensional R-vector space. For each

p ∈M choose a small enough neighborhood U of p so that there exist local trivializations
(U,Φ′) of E ′ and (U,Φ′′) of E ′′, and define the map

Φ: π−1(U) → U × Rk′+k′′ , Φ(v′, v′′) :=
(
π′(v′),

(
πRk′ ◦ Φ′(v′), πRk′′ ◦ Φ′′(v′′)

))
.

Suppose that we are given another such pair of local trivializations
(
Ũ , Φ̃′) and (Ũ , Φ̃′′).

Let τ ′ : U ∩ Ũ → GL(k′,R) and τ ′′ : U ∩ Ũ → GL(k′′,R) be the corresponding transition
functions. Then the transition function for E ′ ⊕ E ′′ has the form

Φ̃ ◦ Φ−1
(
p, (v′, v′′)

)
=
(
p, τ(p)(v′, v′′)

)
,

where τ(p) := τ ′(p)⊕ τ ′′(p) ∈ GL(k′ + k′′,R) is the block diagonal matrix(
τ ′(p) O
O τ ′′(p)

)
.

Since this depends smoothly on p, it follows from Lemma 6.6 that E ′ ⊕ E ′′ is a smooth
vector bundle over M .

Example 6.8 (Restriction of a vector bundle). Let π : E →M be a rank-k vector bundle
and let S ⊆ M be any subset. We define the restriction of E to S to be the set E|S :=⋃
p∈S Ep, with the projection E|S → S obtained by restricting π. If Φ: π−1(U) → U ×Rk

is a local trivialization of E over U ⊆M , it restricts to a bijective map from (π|S)−1(U∩S)
to (U ∩ S)× Rk, and it is easy to check that these form local trivializations for a vector
bundle structure on E|S.
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• If E is a smooth vector bundle over M and S ⊆ M is an embedded submanifold,
then it follows easily from Lemma 6.6 that E|S is a smooth vector bundle over M , taking
also [Exercise Sheet 8, Exercise 5(a)] into account.

• If E is a smooth vector bundle over M , but S ⊆ M is merely immersed, then we
give E|S a topology and a smooth structure making it into a smooth rank-k vector bundle
over S as follows: For each p ∈ S, choose a neighborhood U of p in M over which there
is a smooth local trivialization Φ of E, and a neighborhood V of p in S that is embedded
in M and contained in U (see Proposition 5.17). Then the restriction of Φ to π−1(V ) is
a bijection from π−1(V ) to V × Rk, and we can apply Lemma 6.6 to these bijections to
yield the desired structure.

In particular, if S ⊆M is a smooth (immersed or embedded) submanifold, then TM |S is
called the ambient tangent bundle over S.

6.2 Sections of a Vector Bundle

Definition 6.9. Let π : E →M be a vector bundle. A local section of E is a continuous
map σ : U → E defined on some open subset U ⊆ M and satisfying π ◦ σ = IdU (see
Figure 6.2). This means that σ(p) ∈ Ep for every p ∈ U . A global section of E is a section
of E defined on all of M , i.e., a continuous map σ : M → E such that π ◦ σ = IdM .

A rough (local or global) section of E over an open subset U ⊆ M is defined to be a
(not necessarily continuous) map σ : U → E such that π ◦ σ = IdU . (Note that a local
section of E over U is the same as a global section of the restricted bundle E|U .)

The zero section of E is the global section ζ : M → E of E defined by ζ(p) = 0 ∈ Ep
for each p ∈ M . Note that ζ is continuous, and if E → M is a smooth vector bundle,
then ζ is smooth; see [Exercise Sheet 10, Exercise 3(a)].

If M is a smooth manifold and if E is a smooth vector bundle over M , then a smooth
(local or global) section of E is one that is a smooth map from its domain to E.

(

)

π

σ

σ(U)

U

E

M

Figure 6.2: A local section of a vector bundle

If E → M is a smooth vector bundle, then the set of all smooth global sections of E
is an R-vector space under pointwise addition and scalar multiplication:

(c1σ1 + c2σ2)(p) := c1σ1(p) + c2σ2(p).
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This vector space is usually denoted by Γ(E) (but for particular smooth vector bundles we
often introduce specialized notation for their spaces of global sections) and it is infinite-
dimensional, see [Exercise Sheet 10, Exercise 3] and Exercise 2.21. Moreover, smooth
sections of E → M can be multiplied by smooth real-valued functions: If f ∈ C∞(M)
and σ ∈ Γ(E), then we obtain a new smooth section fσ ∈ Γ(E) defined by

(f σ)(p) := f(p)∈

R

σ(p)∈

Ep

. (6.1)

⇝ The various claims made above are proved in [Exercise Sheet 10, Exercise 3(b)].

⇝ The global sections of a product bundle are discussed in [Exercise Sheet 10, Exercise
3(c)].

Lemma 6.10 (Extension lemma for smooth vector bundles). Let π : E →M be a smooth
vector bundle. Let A ⊆ M be a closed subset and let σ : A → E be a section of E|A that
is smooth in the sense that σ extends to a smooth local section of E in a neighborhood of
each point. Then for each open subset U ⊆M containing A, there exists a smooth global
section σ̃ ∈ Γ(E) such that σ̃|A = σ and supp σ̃ = {p ∈M | σ̃(p) ̸= 0} ⊆ U .

Proof. Exercise! (Similar to the proof of Lemma 2.22).

⇝ For two applications of Lemma 6.10 we refer to [Exercise Sheet 10, Exercises 3(d)
and 4(c)].

Lemma 6.11 (Extension lemma for sections of restricted bundles). Let π : E → M
be a smooth vector bundle over a smooth manifold M and let S ⊆ M be an embedded
submanifold. For any smooth section σ of the restricted bundle E|S →M , show that there
exists a neighborhood U of S in M and a smooth section σ̃ of E|U such that σ = σ̃|S. If
E has positive rank, then show that every smooth section of E|S extends smoothly to all
of M if and only if S is a properly embedded.

Proof. Exercise! (Similar to the solution of [Exercise Sheet 8, Exercise 6]).

6.2.1 Local and Global Frames

Definition 6.12. Let E → M be a vector bundle. If U ⊆ M is an open subset, then
a k-tuple of local sections (σ1, . . . , σk) of E over U is said to be linearly independent if
their values

(
σ1(p), . . . , σk(p)

)
form a linearly independent k-tuple in Ep for each p ∈ U .

Similarly, they are said to span E if their values span Ep for each p ∈ U .

A local frame for E over U is an ordered k-tuple (σ1, . . . , σk) of linearly independent
local sections of E over U that span E; thus,

(
σ1(p), . . . , σk(p)

)
is a basis for the fiber Ep

for each p ∈ U . It is called a global frame if U =M . We often denote a frame (σ1, . . . , σk)
by (σi).

If, moreover, E →M is a smooth vector bundle, then a local or global frame for E is
said to be smooth if each σi is a smooth section of E.
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Example 6.13 (Global frame for a product bundle). If E =M ×Rk →M is a (smooth)
product bundle over a (smooth) manifold M , then the standard basis (e1, . . . , ek) for Rk

yields a (smooth) global frame ẽi for E, defined by

ẽi : M → E, p 7→ (p, ei).

⇝ For the correspondence between smooth local frames and smooth local trivializations
see [Exercise Sheet 10, Exercise 5] (which also settles the question of the existence
of smooth local frames).

⇝ For the completion of smooth local frames for smooth vector bundles see [Exercise
Sheet 10, Exercise 4].

We conclude this section with the important observation that smoothness of sections
of smooth vector bundles can be characterized in terms of local frames.

Assume that (σi) is a smooth local frame for a smooth vector bundle E → M over
some open subset U ⊆ M . If τ : M → E is a rough section, then the value of τ at an
arbitrary point p ∈ U can be written as

τ(p) = τ i(p)σi(p)

for some uniquely determined numbers
(
τ 1(p), . . . , τ k(p)

)
. This clearly defines k-functions

τ i : U → R, called the component functions of τ with respect to the given local frame (σi).

Proposition 6.14 (Local frame criterion for continuity/smoothness). Let π : E →M be
a continuous (respectively smooth) vector bundle and let τ : M → E be a rough section. If
(σi) is a continuous (respectively smooth) local frame for E over an open subset U ⊆M ,
then τ is continuous (respectively smooth) if and only if its component functions with
respect to (σi) are continuous (respectively smooth).

Proof. We prove the statement in the smooth case; the other case can be treated similarly.
Let Φ: π−1(U) → U × Rk be the smooth local trivialization associated with the smooth
local frame (σi), see [Exercise Sheet 10, Exercise 5(b)]. Since Φ is a diffeomorphism, τ is
smooth on U if and only if Φ ◦ τ is smooth on U . By the construction of Φ in [Exercise
Sheet 10, Exercise 5(b)] we know that

(
Φ ◦ τ

)
(p) = Φ

(
τ i(p)σi(p)

)
=
(
p,
(
τ 1(p), . . . , τ k(p)

))
,

where (τ i) are the component functions of τ with respect to (σi). Therefore, Φ ◦ τ is
smooth if and only if the component functions τ i are smooth according to [Exercise Sheet
3, Exercise 4(b)].

Note that Proposition 6.14 applies equally well to local sections, since a local section
of E over an open subset V ⊂M is a global section of the restricted bundle E|V .
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6.3 Subbundles

Definition 6.15. Given a vector bundle πE : E →M , a subbundle of E is a vector bundle
πD : D → M , in which D is a topological subspace of E and πD is the restriction of πE
to D, such that for each p ∈ M , the subset Dp = D ∩ Ep is a linear subspace of Ep, and
the vector space structure on Dp is the one inherited from Ep.

If E → M is a smooth vector bundle, then a subbundle of E is called a smooth
subbundle if it is a smooth vector bundle and an embedded submanifold of E.

Note that the condition that D be a vector bundle overM implies that all of the fibers
Dp must be non-empty and have the same dimension.

Figure 6.3: A subbundle of a vector bundle

The following lemma gives a convenient condition for checking that a union of sub-
spaces

{
Dp ⊆ Ep | p ∈M

}
is a smooth subbundle.

Lemma 6.16 (Local frame criterion for subbundles). Let π : E →M be a smooth vector
bundle of rank k. Suppose that for each p ∈ M we are given an m-dimensional linear
subspace Dp ⊆ Ep. Then D =

⋃
p∈M Dp ⊆ E is a smooth subbundle of E if and only if the

following condition is satisfied: “Each point of M has a neighborhood U on which there
exist smooth local sections σ1, . . . , σm : U → E with the property that σ1(q), . . . , σm(q)
form a basis for Dq at each q ∈ U .”

Proof. If D →M is a smooth subbundle of E →M , then by definition each p ∈M has a
neighborhood U over which there exists a smooth local trivialization of D, and [Exercise
Sheet 10, Exercise 5(a)] shows that there exists a smooth local frame for D over U , namely
a collection of smooth sections τ1, . . . , τm : U → D whose images form a basis for Dq at
each point q ∈ U . The smooth sections of E that we seek are obtained by composing
with the inclusion map ι : D ↪→ E; that is, σj = ι ◦ τj for j ∈ {1, . . . ,m}.

For the details of the proof of the converse direction, which uses [Exercise Sheet 10,
Exercise 4(a)] and [Exercise Sheet 10, Exercise 5(b)], we refer to [Lee13, Lemma 10.32].

Example 6.17 (Subbundles).

(1) LetM be a smooth manifold and let S ⊆M be an immersed k-submanifold. Then the
tangent bundle TS is a smooth rank-k subbundle of the ambient tangent bundle TM |S;
see [Lee13, Problem 10-14].

(2) If M is a smooth manifold and if V is a nowhere-vanishing smooth vector field on M
(see Chapter 7), then the set D ⊆ TM whose fiber at each p ∈ M is the linear span of
Vp ∈ TpM \ {0} is a smooth 1-dimensional subbundle of TM .

(3) Let E → M be any smoothly trivial vector bundle of rank k and let (E1, . . . , Ek)
be a smooth global frame for E. If m ∈ {0, . . . , k}, then the subset D ⊆ E defined by
Dp = span

(
E1|p, . . . , Em|p

)
for each p ∈M is a smooth rank-m subbundle of E.



CHAPTER 7

VECTOR FIELDS AND FLOWS

7.1 Vector Fields

Definition 7.1. A rough (resp. continuous , smooth) vector field on a smooth manifoldM
is a rough (resp. continuous, smooth) global section of the tangent bundle π : TM →M .

More concretely, a vector field is a map X : M → TM , usually written p 7→ Xp, with
the property that π ◦X = IdM or, equivalently, Xp ∈ TpM for each p ∈M . The support
of X is defined as the closure of the set {p ∈M | Xp ̸= 0}. In particular, we say that X
is compactly supported if its support is a compact set.

If U ⊆ M is open, then the fact that TpU is naturally identified with TpM for each
p ∈ U (see Proposition 3.9) allows us to identify TU with the open subset π−1(U) ⊆ TM .
Therefore, a vector field on U can be thought of either as a map U → TU or as a map
U → TM . If X is a vector field on M , then its restriction X|U is a vector field on U ,
which is smooth if X itself smooth.

A (continuous) vector field on an open subset U ⊆ Rn is simply a continuous map
U → Rn, which can be visualized as attaching an “arrow” to each point of U . Similarly,
we think of a (continuous) vector field on an open subset U of a smooth manifoldM as an
arrow attached to each point of M , chosen to be tangent to M and to vary continuously
from point to point (see Figure 7.1).

Figure 7.1: A vector field

⇝ The set X(M) of all smooth (global) vector fields on a smooth manifold M is an
infinite-dimensional R-vector space and a module over the ring C∞(M): this is a
special case of [Exercise Sheet 10, Exercise 3(b)].

⇝ Extension lemma for vector fields : this is a special case of Lemma 6.10; see also
[Exercise Sheet 10, Exercise 3(d)] for an application (any tangent vector at a point
can be extended to a smooth vector field on the entire manifold).

⇝ Local/global frame for M = local/global frame for TM , see Definition 6.12.
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⇝ Completion of smooth local frames for M : this is a special case of [Exercise Sheet
10, Exercise 4].

Let M and X be as above. If
(
U, (xi)

)
is a smooth coordinate chart for M , then we

can write the value of X at any point p ∈ U in terms of the coordinate basis vectors:

Xp = X i(p)
∂

∂xi

∣∣∣∣
p

.

This defines n functions X i : U → R, called the component functions of X in the given
chart .

Proposition 7.2 (Smoothness criterion for vector fields). Let M be a smooth manifold
and let X : M → TM be a rough vector field on M . If

(
U, (xi)

)
is a smooth coordinate

chart for M , then the restriction of X to U is smooth if and only if its components
functions with respect to this chart are smooth.

Proof. If
(
U,φ = (xi)

)
is a smooth chart forM , then

(
π−1(U), φ̃ = (xi, vi)

)
are the natural

coordinates on TM (see Proposition 3.12), and the coordinate representation of X with
respect to these charts is

X̂(x1, . . . , xn) = φ̃

(
X i
(
φ−1(x)

) ∂

∂xi

∣∣∣∣
φ−1(x)

)
=
(
x1, . . . , xn, X1

(
φ−1(x)

)
, . . . , Xn

(
φ−1(x)

))
.

Therefore, X is smooth on U if and only if its component functions X i, i ∈ {1, . . . , n},
are smooth on U .

Example 7.3.

(1) If
(
U, (xi)

)
is any smooth chart on M , then the assignment p 7→ ∂

∂xi

∣∣
p
determines a

vector field on U , called the i-th coordinate vector field and denoted by ∂
∂xi

. It is smooth
by Proposition 7.2, because its component functions are constant.

In particular, the coordinate vector fields form a smooth local frame
(
∂
∂xi

)
for TM ,

called a coordinate frame. Note that every point of M is in the domain of such a local
frame.

(2) The Euler vector field V on Rn whose value at a point x = (x1, . . . , xn) ∈ Rn is

Vx = x1
∂

∂x1

∣∣∣∣
x

+ . . .+ xn
∂

∂xn

∣∣∣∣
x

.

It is discussed in [Exercise Sheet 12, Exercise 2].

We will encounter many more examples of vector fields (especially on Rn) later in the
course and in the exercise sheets as well.
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7.1.1 Vector Fields as Derivations of C∞(M)

An essential property of vector fields is that they define operators on the space of smooth
real-valued functions. If X ∈ X(M) and f ∈ C∞(U), where U ⊆ M is open, then we
obtain a new function

Xf : U → R, p 7→ (Xf)(p) := Xpf.

(Do not confuse the notations fX and Xf : the former is a smooth vector field on U
obtained by multiplying X by f , that is, (fX)(p) = f(p)Xp, while the latter is the real-
valued function on U obtained by applying the vector field X to the smooth function
f .) Since the action of a tangent vector on a function is determined by the values of the
function in any arbitrary small neighborhood (see Proposition 3.8), it follows that Xf is
locally determined. In particular, for any open subset V ⊆ U , we have

(Xf)|V = X
(
f |V
)
.

This construction yields another useful smoothness criterion for vector fields.

Proposition 7.4 (Smoothness criterion for vector fields). Let M be a smooth manifold
and let X : M → TM be a rough vector field on M . The following are equivalent:

(a) X is smooth.

(b) For every f ∈ C∞(M), the function Xf : M → R is smooth.

(c) For every open subset U ⊆ M and every f ∈ C∞(U), the function Xf : U → R is
smooth.

Proof.

(a) ⇒ (b): Given p ∈ M , pick a smooth chart
(
U, (xi)

)
for M containing p. For x ∈ U

we may write (
Xf
)
(x) =

(
X i(x)

∂

∂xi

∣∣∣∣
x

)
f = X i(x)

∂f̂

∂xi
(
x̂
)
.

Since the component functions X i of X are smooth on U by Proposition 7.2, it follows
that Xf is smooth on U . We conclude by [Exercise Sheet 3, Exercise 2(a)].

(b) ⇒ (c): Fix an open subset U ⊆ M and f ∈ C∞(U). For any p ∈ U , let ψ be a
smooth bump function that is equal to 1 in a neighborhood of p and supported in U (see

Proposition 2.20), and define f̃ = ψf , extended to be zero on M \ suppψ. Then Xf̃ is
smooth by assumption, and equal to Xf in a neighborhood of p by construction (and by
the above discussion). We conclude by [Exercise Sheet 3, Exercise 2(a)].

(c) ⇒ (a): If (xi) are smooth local coordinates on U ⊆M , then we think of each coordinate
xi as a smooth function on U , and we have

X(xi) =
(
Xj ∂

∂xj

)
(xi)

∂xi

∂xj
= δij

==== X i ,

which is smooth by assumption. We conclude by Proposition 7.2 and [Exercise Sheet 3,
Exercise 2(a)].
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One consequence of Proposition 7.4 is that a smooth vector field X ∈ X(M) defines a
map

C∞(M) → C∞(M), f 7→ Xf,

which (as can be checked pointwise) is R-linear and satisfies the following product rule
for vector fields:

X(fg) = f Xg + g Xf ;

in other words, the map is a derivation of C∞(M).
The next proposition shows that derivations of C∞(M) can be identified with smooth

vector fields. Due to this result, we sometimes identify smooth vector fields on M with
derivations of C∞(M), using the same letter for both the vector field (thought of as a
smooth map M → TM) and the derivation (thought of as a linear map C∞(M) →
C∞(M)).

Proposition 7.5. Let M be a smooth manifold. A map D : C∞(M) → C∞(M) is a
derivation if and only if it is of the form Df = Xf for some X ∈ X(M).

Proof.

“⇒”: We just showed above that any smooth vector field induces a derivation of C∞(M).

“⇐”: Let p ∈M and consider the map

Xp : C
∞(M) → R, f 7→ (Df)(p).

Since D is R-linear, Xp is also R-linear, and since D is a derivation, we have

Xp(fg) = D(fg)(p) =
(
f D(g) + g D(f)

)
(p)

= f(p)D(g)(p) + g(p)D(f)(p)

= f(p)Xpg + g(p)Xpf.

Hence, Xp is a derivation at p ∈M , i.e., Xp ∈ TpM (see Definition 3.4). We obtain thus
a rough vector field X : M → TM, p 7→ Xp, but since Xf = Df is smooth for every
f ∈ C∞(M), X is actually smooth by Proposition 7.4, so we are done.

7.1.2 Vector Fields and Smooth Maps

If F : M → N is a smooth map and if X is a (rough) vector field on M , then for each
point p ∈M we obtain a tangent vector dFp(Xp) ∈ TF (p)N by applying the differential of
F at p to the tangent vector Xp ∈ TpM . However, this does not define a (rough) vector
field on N in general. For example, if F is not surjective, there is no way to decide what
tangent vector to assign to a point q ∈ N \ F (M), while if F is not injective, then for
some points of N there may be several different tangent vectors obtained by applying dF
to X at different points of M .

Let F : M → N be a smooth map and let X be a (rough) vector field on X. If there
exists a (rough) vector field Y on N such that dFp(Xp) = YF (p) for each p ∈ M , then X
and Y are said to be F -related.
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Lemma 7.6. Let F : M → N be a smooth map. Let X ∈ X(M) and Y ∈ X(N). Then
X and Y are F -related if and only if for every smooth real-valued function f defined on
an open subset of N , we have

X(f ◦ F ) = (Y f) ◦ F.

Proof. See [Exercise Sheet 11, Exercise 2(a)].

It is important to remember that for a given smooth map F : M → N and vector field
X ∈ X(M), there may not be any vector field on N that is F -related to X. There is one
special case, however, in which there is always such a vector field, as the next proposition
shows.

Proposition 7.7. Let F : M → N be a diffeomorphism. For every smooth vector field
X on M there exists a unique smooth vector field Y on N that is F -related to X. The
smooth vector field Y is denoted by F∗X and is called the pushforward of X by F .

Proof. See [Exercise Sheet 11, Exercise 2(c)].

7.1.3 Vector Fields and Submanifolds

If S ⊆ M is an immersed or embedded submanifold, a vector field X on M does not
necessarily restrict to a vector field on S, because Xp ∈ TpM may not lie in the subspace
TpS ⊆ TpM at a point p ∈ S. Given a point p ∈ S, a vector field X on M is said to be
tangent to S at p if Xp ∈ TpS ⊆ TpM . It is called tangent to S if it is tangent to S at all
points of S (see Figure 7.2).

Figure 7.2: A vector field tangent to a submanifold

Proposition 7.8. Let M be a smooth manifold, S ⊆ M be an embedded submanifold,
and X ∈ X(M). Then X is tangent to S if and only if (Xf)|S = 0 for every f ∈ C∞(M)
such that f |S ≡ 0.

Proof. The assertion is an immediate consequence of Proposition 5.19.

Proposition 7.9 (Restricting smooth vector fields to submanifolds). Let M be a smooth
manifold, let S be an immersed submanifold of M , and let ι : S ↪→ M be the inclusion
map. The following statements hold:

(a) If Y ∈ X(M) and if there is X ∈ X(S) that is ι-related to Y , then Y ∈ X(M) is
tangent to S.

(b) If Y ∈ X(M) is tangent to S, then there is a unique smooth vector field on S,
denoted by Y |S, which is ι-related to Y .

Proof. See [Exercise Sheet 11, Exercise 7(a)].
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7.1.4 The Lie Bracket

We now introduce an important way of combining two smooth vector fields to obtain
another smooth vector field. Let M be a smooth manifold and let X, Y ∈ X(M). Given
f ∈ C∞(M), we can apply X to f to obtain Xf ∈ C∞(M) (see Proposition 7.4) and we
can now apply Y to Xf to obtain Y (Xf) ∈ C∞(M). The operation f 7→ Y Xf does not
satisfy the product rule in general, and thus cannot be a vector field (see Proposition 7.5),
as the following example shows:

Example 7.10. Consider the smooth vector fields

X =
∂

∂x
and Y = x

∂

∂y

and the smooth functions

f(x, y) = x and g(x, y) = y

on R2. We compute

(XY )(fg) = X

(
x
∂(xy)

∂y

)
= X(x2) =

∂(x2)

∂x
= 2x

and

fXY g + gXY f = xX

(
x
�
�
���
1

∂y

∂y

)
+ y X

(
x
�
�
���
0

∂x

∂y

)
= x

�
�
���
1

∂x

∂x
= x,

so XY is not a derivation of C∞(R2).

However, we can also apply the same two vector fields in the opposite order, obtaining
a (usually different) smooth function Y Xf ∈ C∞(M). Applying both of these operators
to f ∈ C∞(M) and subtracting, we obtain the operator

[X, Y ] : C∞(M) → C∞(M), f 7→ XY f − Y Xf,

called the Lie bracket of X and Y . The key fact, following readily from Proposition 7.5,
is that this operator is a vector field.

Lemma 7.11. The Lie bracket of any pair of smooth vector fields on a smooth manifold
is a smooth vector field.

Proof. See [Exercise Sheet 11, Exercise 3].

We mention below the basic properties of the Lie bracket and we refer to Exercise
Sheet 11 for their proofs. The geometric interpretation of the Lie bracket will not be
covered in this course, but we refer to [Lee13, Chapter 9, Lie derivatives] for some details.

Proposition 7.12 (Coordinate formula for the Lie bracket). Let M be a smooth n-
manifold and let X, Y ∈ X(M). Let

X =
n∑
i=1

X i ∂

∂xi
and Y =

n∑
j=1

Y j ∂

∂xj
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be the coordinate expressions for X and Y , respectively, in terms of some smooth local
coordinates (xi) for M . Then the Lie bracket [X, Y ] has the following coordinate expres-
sion:

[X, Y ] =
n∑
j=1

n∑
i=1

(
X i∂Y

j

∂xi
− Y i∂X

j

∂xi

)
∂

∂xj
.

Proof. See [Exercise Sheet 11, Exercise 4(a)]

Proposition 7.13 (Properties of the Lie bracket). Let M be a smooth manifold. The Lie
bracket satisfies the following identities for all X, Y, Z ∈ X(M):

(a) Bilinearity: For all a, b ∈ R we have

[aX + bY, Z] = a[X,Z] + b[Y, Z],

[Z, aX + bY ] = a[Z,X] + b[Z, Y ].

(b) Antisymmetry:

[X, Y ] = −[Y,X].

(c) Jacobi identity: [
X, [Y, Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X, Y ]

]
= 0.

(d) For all f, g ∈ C∞(M) we have

[fX, gY ] = fg[X, Y ] + (fXg)Y − (gY f)X.

Proof. See [Exercise Sheet 11, Exercise 5].

Proposition 7.14 (Naturality of the Lie bracket). Let F : M → N be a smooth map.
Let X1, X2 ∈ X(M) and Y1, Y2 ∈ X(N) be smooth vector fields such that Xi is F -related
to Yi for i ∈ {1, 2}. Then [X1, X2] is F -related to [Y1, Y2].

Proof. See [Exercise Sheet 11, Exercise 6(a)].

Corollary 7.15 (Pushforwards of Lie brackets). Let F : M → N be a diffeomorphism.
For any X1, X2 ∈ X(M) we have F∗[X1, X2] = [F∗X1, F∗X2].

Proof. See [Exercise Sheet 11, Exercise 6(b)].

Corollary 7.16 (Lie brackets of smooth vector fields tangent to submanifolds). Let M be
a smooth manifold and let S be an immersed submanifold of M . If Y1 and Y2 are smooth
vector fields on M that are tangent to S, then their Lie bracket [Y1, Y2] is tangent to S as
well.

Proof. See [Exercise Sheet 11, Exercise 7(b)].
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7.2 Integral Curves

LetM be a smooth manifold. If γ : J ⊆ R →M is a smooth curve, then for each t ∈ J the
velocity vector γ′(t) is an element of Tγ(t)M . We describe next a way to work backwards:
given a tangent vector at each point, we seek a curve whose velocity at each point is equal
to the given vector there.

Definition 7.17. Let M be a smooth manifold and let V be a vector field on M .

(a) An integral curve of V is a differentiable curve γ : J → M whose velocity at each
point is equal to the value of V at that point:

γ′(t) = Vγ(t), ∀ t ∈ J .

If 0 ∈ J , then γ(0) ∈M is called the starting point of γ.

(b) A maximal integral curve of V is one that cannot be extended to an integral curve
on any larger open interval.

Figure 7.3: An integral curve of a vector field

Finding integral curves of vector fields boils down to solving a system of ODEs in a
smooth chart. Suppose that V ∈ X(M) and that γ : J ⊆ R → M is a smooth curve. On
a smooth coordinate domain U ⊆M we can write γ in local coordinates as

γ(t) =
(
γ1(t), . . . , γn(t)

)
.

Then the condition γ′(t) = Vγ(t) for γ to be an integral curve of V can be written as

γ̇i(t)
∂

∂xi

∣∣∣∣
γ(t)

= V i
(
γ(t)

) ∂

∂xi

∣∣∣∣
γ(t)

,

which reduces to the following autonomous system of ODEs:
γ̇1(t) = V 1

(
γ1(t), . . . , γn(t)

)
...

γ̇n(t) = V n
(
γ1(t), . . . , γn(t)

) . (7.1)

The fundamental fact about such systems is the following existence, uniqueness and
smoothness theorem. (This is the reason for the terminology “integral curves”, because
solving a system of ODEs is often referred to as “integrating” the system.)

Theorem 7.18 (Fundamental theorem for autonomous ODEs). Let V : U → Rn be a
smooth vector-valued function, where U ⊆ Rn is open. Consider the initial value problem

ẏi(t) = V i
(
y1(t), . . . , yn(t)

)
, 1 ≤ i ≤ n (1)

yi(t0) = ci , 1 ≤ i ≤ n (2)

for arbitrary t0 ∈ R and c = (c1, . . . , cn) ∈ U .
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(a) Existence: For any t0 ∈ R and x0 ∈ U , there exists an open interval J0 ∋ t0 and an
open subset x0 ∈ U0 ⊆ U such that for each c ∈ U0, there is a C1 map y : Jo → U
that solves (1) - (2).

(b) Uniqueness: Any two differentiable solutions to (1) - (2) defined on intervals con-
taining t0 agree on their common domain.

(c) Smoothness: Let J0 and U0 be as in (a), and consider the map θ : J0 × U0 → U ,
(t, x) 7→ y(t), where y : J0 → U is the unique solution to (1) with initial condition
y(t0) = x. Then θ is smooth.

Proposition 7.19. Let V be a smooth vector field on a smooth manifold M . For each
point p ∈ M , there exists ε > 0 and a smooth curve γ : (−ε, ε) → M that is an integral
curve of V starting at p ∈M .

Proof. Follows immediately from the existence and smoothness part of Theorem 7.18.

Comment: Given V and M as above, it is a consequence of the uniquness part of The-
orem 7.18 that for each p ∈ M there actually exists a unique, maximal integral curve of
V starting at p ∈M ; see Theorem 7.26(a).

The next two lemmas show how affine reparametrizations affect integral curves.

Lemma 7.20 (Rescaling lemma). Let V be a smooth vector field on a smooth manifold
M , let J ⊆ R be an interval, and let γ : J →M be an integral curve of V . For any a ∈ R,
the curve

γ̃ : J̃ →M, t 7→ γ(at)

is an integral curve of the vector field Ṽ := aV on M , where J̃ := {t ∈ R | at ∈ J}.

Proof. See [Exercise Sheet 12, Exercise 1(a)].

Lemma 7.21 (Translation lemma). Let V be a smooth vector field on a smooth manifold
M , let J ⊆ R be an interval, and let γ : J →M be an integral curve of V . For any b ∈ R,
the curve

γ̂ : Ĵ →M, t 7→ γ(t+ b)

is also an integral curve of V on M , where Ĵ := {t ∈ R | t+ b ∈ J}.

Proof. See [Exercise Sheet 12, Exercise 1(b)].

Proposition 7.22 (Naturality of integral curves). Let F : M → N be a smooth map.
Then X ∈ X(M) and Y ∈ X(N) are F -related if and only if F takes integral curves of X
to integral curves of Y .

Proof. See [Exercise Sheet 11, Exercise 1(e)].

Example 7.23. Let (x, y) be the standard coordinates on R2.
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(1) Let

V =
∂

∂x
∈ X(R2)

be the first coordinate vector field. Note that the integral curves of V are precisely the
straight lines parallel to the x-axis (see Figure 7.4a), with parametrization of the form
γ(t) = (a+ t, b) for constants a, b ∈ R. Thus, there is a unique integral curve starting at
each point of the plane, and the images of different integral curves are either identical or
disjoint.

(2) Let

W = −y ∂

∂x
+ x

∂

∂y
∈ X(R2).

To determine the integral curves of W we proceed as follows (see p. 70):

γ(t) =
(
γ1(t), γ2(t)

)
=⇒ γ̇(t) = Wγ(t) =⇒

{
γ̇1(t) = −γ2(t)
γ̇2(t) = γ1(t)

γ̈1(t)+γ1(t)=0
========⇒

{
γ1(t) = a cos t− b sin t

γ2(t) = a sin t+ b cos t
(
= −γ̇1(t)

)
for constants a, b ∈ R. Thus, each curve of the form

γ(t) = (a cos t− b sin t, a sin t+ b cos t), t ∈ R,

is an integral curve of W . When (a, b) = (0, 0), this is the constant curve γ(t) = (0, 0);
otherwise, it is a circle traversed clockwise (see Figure 7.4b). Since γ(0) = (a, b), we
see again that there is a unique integral curve staring at each point (a, b) ∈ R2, and the
images of the various integral curves are either identical or disjoint.

(a) Integral curves of V (b) Integral curves of W
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7.3 Flows

Definition 7.24. Let M be a smooth manifold.

(a) A flow domain for M is an open subset D ⊆ R×M with the property that for each
p ∈M , the set

D(p) :=
{
t ∈ R | (t, p) ∈ D

}
is an open interval containing 0 ∈ R.

(b) A (local) flow on M is a continuous map θ : D → M , where D ⊆ R ×M is a flow
domain, which satisfies the following group laws:

• ∀ p ∈M : θ(0, p) = p.

• ∀ s ∈ D(p) ∀ t ∈ D(θ(s,p)) such that s+ t ∈ D(p), we have

θ
(
t, θ(s, p)

)
= θ(t+ s, p).

When D = R×M (and hence θ : R×M →M is a continuous left R-action on M)
we say that θ is a global flow on M (or a one-parameter group action).

(c) A maximal flow on M is a flow that admits no extension to a flow on a larger flow
domain.

Figure 7.5: A flow domain

Let θ : D →M be a flow on M .

• For each p ∈M we define a map

θ(p) : D(p) →M, θ(p)(t) = θ(t, p).

• For each t ∈ R we define a set

Mt :=
{
p ∈M | (t, p) ∈ D

}
and a map

θt : Mt →M, θt(p) = θ(t, p)
(
= θ(p)(t)

)
.

These maps satisfy

θt ◦ θs = θt+s and θ0 = IdM ,

so each θt is a homeomorphism, and if θ is smooth, then each θt is a diffeomorphism.

Note that

p ∈Mt ⇐⇒ (t, p) ∈ D ⇐⇒ t ∈ D(p).
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Proposition 7.25. If θ : D →M is a smooth flow on M , then the infinitesimal generator
V of θ, defined as

V : M → TM, p 7→ Vp := θ(p)
′
(0) =

d

dt

∣∣∣∣
t=0

θ(p)(t) ,

is a smooth vector field on M , and each curve θ(p) is an integral curve of V starting at
p ∈M .

Proof. If D = R×M , then this is shown in [Exercise Sheet 12, Exercise 4]. The proof of
the general case is essentially identical to the proof for global flows (after verifying that
all the expressions involved make sense).

The term “infinitesimal generator” comes from the following picture: in a smooth
chart, a good approximation to an integral curve can be obtained by composing many
small straight-line motions, with the direction and length of each motion determined by
the value of the vector field at the point arrived at in the previous step. Intuitively, one
can think of a flow as a sequence of infinitely many infinitesimally small linear steps.

Theorem 7.26 (Fundamental theorem on flows). Let V be a smooth vector field on
a smooth manifold M . There exists a unique smooth maximal flow θ : D → M whose
infinitesimal generator is V . This flow has the following properties:

(a) For each p ∈ M , the curve θ(p) : D(p) → M is the unique maximal integral curve of
V starting at p.

(b) If s ∈ D(p), then D(θ(s,p)) is the interval

D(θ(s,p)) = D(p) − s =
{
t− s | t ∈ D(p)

}
.

(c) For each t ∈ R, the set Mt is open in M , and the map θt : Mt → M−t is a diffeo-
morphism with inverse θ−t.

Proof.

(a) Proposition 7.19 shows that there exists an integral curve of V starting at each point
p ∈ M . Suppose that γ and γ̃ are two integral curves of V defined on the same open
interval J such that γ(t0) = γ̃(t0) for some t0 ∈ J . Consider the set

S :=
{
t ∈ J | γ(t) = γ̃(t)

}
and observe that S ̸= ∅, because t0 ∈ S by hypothesis, and also that it is closed in J by
continuity. On the other hand, pick t1 ∈ S. Then in a smooth coordinate neighborhood
around the point p = γ(t1), γ and γ̃ are both solutions to the same ODE with the same
initial condition γ(t1) = γ̃(t1) = p. By the uniqueness part of Theorem 7.18, γ ≡ γ̃ on
an open interval containing t1, which implies that S is open in J . Since J is connected,
we infer that S = J , which in turn shows that γ = γ̃ on all of J . Thus, any two integral
curves that agree at one point agree on their common domain.

For each p ∈ M , let D(p) be the union of all open intervals J ⊆ R containing 0 on
which an integral curve of V starting at p is defined. Define θ(p) : D(p) → M by letting
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θ(p)(t) = γ(t), where γ is any integral curve starting at p and defined on an open interval
containing 0 and t. Since all such integral curves agree at t by the argument above, θ(p)

is well defined, and it is obviously the unique maximal integral curve of V starting at p.

Next, for the verification that the set

D :=
{
(t, p) ∈ R×M | t ∈ D(p)

}
is open (so that it is a flow domain) and that the map

θ : D →M, θ(t, p) := θ(p)(t)

satisfies the claimed properties, as well as for the proof of (b), we refer to [Lee13, Theorem
9.12], which makes heavy use of Theorem 7.18.

(c) The fact thatMt is open inM is an immediate consequence of the fact that D is open.
We have

p ∈Mt =⇒ t ∈ D(p) (b)
=⇒ D(θ(t,p)) = D(p) − t

dfn
=⇒ −t ∈ D(θ(t,p)) =⇒ θt(p) ∈M−t ,

which shows that θt maps Mt to M−t for any (fixed) t ∈ R. Moreover, the group laws
then show that θ−t ◦ θt is equal to the identity on Mt. Reversing the roles of t and −t
shows that θt ◦ θ−t is equal to the identity on M−t. This completes the proof of (c).

The flow whose existence and uniqueness are asserted in Theorem 7.26 is called the
flow generated by V , or just the flow of V .

The naturality of integral curves (see Proposition 7.22) translates into the following
naturality statement for flows.

Proposition 7.27 (Naturality of flows). Let F : M → N be a smooth map. Let X ∈
X(M) and Y ∈ X(N). Let θ be the flow of X and η be the flow of Y . If X and Y are
F -related, then for each t ∈ R it holds that F (Mt) ⊆ Nt and ηt ◦ F = F ◦ θt on Mt:

Mt Nt

M−t N−t

θt

F

ηt

F

Proof. See [Exercise Sheet 12, Exercise 5(a)].

Proposition 7.28 (Diffeomorphism invariance of flows). Let F : M → N be a diffeo-
morphism. If X ∈ X(M) and if θ is the flow of X, then the flow of F∗X ∈ X(N) is
ηt = F ◦ θt ◦ F−1, with domain Nt = F (Mt) for each t ∈ R.

Proof. See [Exercise Sheet 12, Exercise 5(b)].
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7.3.1 Complete Vector Fields

Example 7.29 (Global flows). The two smooth vector fields on the plane described in
Example 7.23 both had integral curves defined for all t ∈ R, so they generate global flows.
We can write them down explicitly:

(1) θV : R× R2 → R2,
(
t, (x, y)

)
7→ (x+ t, y).

For each t ∈ R \ {0}, (θV )t translates the plane to the left (t < 0) or to the right (t > 0)
by a distance |t|.

(2) θW : R× R2 → R2,
(
t, (x, y)

)
7→ (x cos t− y sin t, x sin t+ y cos t).

For each t ∈ R, (θW )t rotates the plane through an angle t about the origin.

There are also smooth vector fields whose integral curves are not defined for all t ∈ R.
Here are two such examples:

Example 7.30. Let (x, y) be the standard coordinates on R2.

(1) Consider M = R2 \ {(0, 0)} and V =
∂

∂x
∈ X(M).

The unique integral curve of V starting at (−1, 0) ∈ M is the curve γ(t) = (t − 1, 0),
cf. Example 7.23(1). However, it cannot be extended continuously past t = 1. This is
intuitively evident because of the “hole” in M at the origin.

(To prove it rigorously, suppose that γ̃ is a continuous extension of γ past t = 1. Then
γ(t) → γ̃(1) ∈ R2 \ {(0, 0)} as t ↗ 1. But we may also consider γ as a map into
R2 by composing with the inclusion M ↪→ R2, and it is obvious from the formula that
γ(t) → (0, 0) as t↗ 1. Since limits in R2 are unique, this is a contradiction.)

(2) Consider M = R2 and W = x2
∂

∂x
∈ X(M).

The unique integral curve of W starting at (1, 0) is γ(t) =
(

1
1−t , 0

)
. It cannot be extended

past t = 1, because its x-coordinate is unbounded as t↗ 1.

Definition 7.31. A smooth vector field V on a smooth manifold M is called complete if
it generates a global flow or, equivalently, if each of its maximal integral curves is defined
for all t ∈ R.

It is not always easy to determine by looking at a vector field whether it is complete
or not. If one can solve the ODE explicitly to find all of the integral curves, and they
all exist for all time (as we did for the vector fields of Example 7.29), then the vector
field is complete. On the other hand, if one can find one single integral curve that cannot
be extended to all of R (as we did for the vector fields of Example 7.30), then it is not
complete. However, it is often impossible to solve the ODE explicitly, so it is useful to
have some general criteria for determining when a vector field is complete. The following
theorem provides such a criterion. For the details of its proof we refer to [Lee13, Lemma
9.15 and Theorem 9.16].

Theorem 7.32. Every compactly supported smooth vector field on a smooth manifold is
complete.



Section 7.3. Flows 77

Corollary 7.33. Every smooth vector field on a compact smooth manifold is complete.

Exercise 7.34 (The escape lemma): LetM be a smooth manifold and let V be a smooth
vector field onM . Show that if γ : J →M is a maximal integral curve of V whose domain
J has a finite least upper bound b ∈ R, then for any t0 ∈ J the image γ

(
[t0, b)

)
of the

interval [t0, b) under γ is not contained in any compact subset of M .





CHAPTER 8

DIFFERENTIAL FORMS

In this chapter we transfer the algebra of alternating tensors on a finite-dimensional
real vector space (see Appendix C) to smooth manifolds and begin to explore the basic
properties of differential forms. The heart of the chapter is the introduction of the most
important operation on differential forms, called the exterior derivative. It is one of
the very few differential operators that are naturally defined on every smooth manifold
without any arbitrary choices.

8.1 Differential 1-Forms

8.1.1 Covectors

Definition 8.1. Let M be a smooth manifold. For each p ∈ M we define the cotangent
space at p, denoted by T∗

pM , to be the dual space of TpM :

T∗
pM := (TpM)∗.

Elements of T∗
pM are called (tangent) covectors at p ∈M .

Given smooth local coordinates (xi) on an open subset U ⊆ M , for each p ∈ U the
coordinate basis

(
∂
∂xi

∣∣
p

)
for TpM gives rise to a dual basis for T∗

pM , which we denote

temporarily by
(
λi|p
)
. Any covector ω ∈ T∗

pM can thus be written uniquely as

ω = ωi λ
i
∣∣
p
, where ωi = ω

(
∂

∂xi

∣∣∣∣
p

)
.

Given now another set of smooth local coordinates (x̃j) whose domain contains p ∈ U ,

denote by
(
λ̃j|p

)
the basis for T∗

pM dual to
(
∂
∂x̃j

∣∣
p

)
. We can compute the components

of the same covector ω ∈ T∗
pM with respect to the new coordinate system as follows.

According to (3.6), the coordinate vector fields transform as follows:

∂

∂xi

∣∣∣∣
p

=
∂x̃j

∂xi
(p)

∂

∂x̃j

∣∣∣∣
p

(8.1)

79
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Writing ω in both systems as

ω = ωi λ
i
∣∣
p
= ω̃j λ̃

j|p ,

we can use (8.1) to compute ωi in terms of ω̃j:

ωi = ω

(
∂

∂xi

∣∣∣∣
p

)
= ω

(
∂x̃j

∂xi
(p)

∂

∂x̃j

∣∣∣∣
p

)
=
∂x̃j

∂xi
(p)ω

(
∂

∂x̃j

∣∣∣∣
p

)
=
∂x̃j

∂xi
(p) ω̃j . (8.2)

8.1.2 The Cotangent Bundle

Definition 8.2. Let M be a smooth manifold. The cotangent bundle of M is denoted by
T∗M and is defined as the disjoint union

T∗M =
⊔
p∈M

T∗
pM.

It has a natural projection map

π : T∗M →M, ω ∈ T∗
pM 7→ p.

As in Subsection 8.1.1, given any smooth local coordinates (xi) on an open subset
U ⊆ M , for each p ∈ M we denote by

(
λi|p
)
the basis for T∗

pM dual to
(
∂
∂xi

∣∣
p

)
. This

defines n maps
λ1, . . . , λn : U → T∗M

(to be denoted differently soon), and λi is called the i-th coordinate covector field .

Proposition 8.3 (The cotangent bundle as vector bundle). Let M be a smooth n-
manifold. With its standard projection map and the natural vector space structure on
each fiber, the cotangent bundle T∗M has a unique topology and smooth structure making
it into a smooth vector bundle of rank n over M for which all coordinate covector fields
are smooth local sections.

Proof. (Similar to the proof of Proposition 6.4.) Given any smooth chart (U,φ) for M
with coordinate functions (xi), define a map

Φ: π−1(U) → U × Rn,

ξi λ
i
∣∣
p
7→
(
p, (ξ1, . . . , ξn)

)
,

where λi is the i-th coordinate covector field associated with (xi). Suppose that (Ũ , φ̃) is

another smooth chart for M with coordinate functions (x̃j), and let Φ̃ : π−1(Ũ) → Ũ ×Rn

be defined analogously. On π−1(U ∩ Ũ), it follows from (8.2) that(
Φ ◦ Φ̃−1

)(
p, (ξ̃1, . . . , ξ̃n)

)
=

(
p,

(
∂x̃j

∂x1
(p) ξ̃j, . . . ,

∂x̃j

∂xn
(p) ξ̃j

))
.

The GL(n,R)-valued function
(
∂x̃j

∂xi

)
is smooth, so it follows from the vector bundle chart

lemma (= Lemma 6.6) that T∗M has a smooth structure making it into a smooth vector
bundle for which the maps Φ are smooth local trivializations. Uniqueness follows as in
the proof of [Exercise Sheet 10, Exercise 6].
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As is the case of the tangent bundle (see the proof of Proposition 3.12), smooth local
coordinates for M yield smooth local coordinates for its cotangent bundle. If (xi) are
smooth coordinates on an open subset U ⊆ M , then [Exercise Sheet 10, Exercise 5(d)]
shows that the map

π−1(U) → R2n, ξi λ
i
∣∣
p
7→
(
x1(p), . . . , xn(p), ξ1, . . . , ξn

)
,

is a smooth coordinate chart for T∗M . We call (xi, ξi) the natural coordinates for T∗M
associated with (xi).

8.1.3 Covector Fields

Definition 8.4. A rough (resp. continuous, smooth) local or global section of T∗M is
called a rough (resp. continuous, smooth) covector field or a (differential) 1-form on the
smooth manifold M .

⇝ The set X∗(M) of all smooth (global) covector fields on a smooth manifold M is an
infinite-dimensional R-vector space and a module over the ring C∞(M): this is a
special case of [Exercise Sheet 10, Exercise 3(b)].

⇝ Extension lemma for covector fields : this is a special case of Lemma 6.10; see also
[Exercise Sheet 10, Exercise 3(d)] for an application (any tangent covector at a point
can be extended to a smooth covector field on the entire manifold).

⇝ Local/global coframe for M = local/global frame for T∗M , see Definition 6.12.

⇝ Completion of smooth local coframes for M : this is a special case of [Exercise Sheet
10, Exercise 4].

In any smooth local coordinates (xi) on an open subset U ⊆ M , a (rough) covector
field ω can be written in terms of the coordinate covector fields (λi) as ω = ωi λ

i for
n functions ωi : U → R, called the component functions of ω in the given chart and
characterized by

ωi(p) = ωp

(
∂

∂xi

∣∣∣∣
p

)
.

If ω is a (rough) covector field and if X is a (rough) vector field on M , then we can
form a function

ω(X) : M → R, p 7→ ωp(Xp).

If we write ω = ωi λ
i and X = X i ∂

∂xi
in terms of local coordinates, then ω(X) has the

local coordinate representation
ω(X) = ωiX

i .

Just as in the case of vector fields (see Proposition 7.2 and Proposition 7.4), there are
several ways to check smoothness of a covector field (see also Proposition 6.14).

Proposition 8.5 (Smoothness criteria for covector fields). Let M be a smooth manifold
and let ω : M → T∗M be a rough covector field on M . The following are equivalent:

(a) ω is smooth.
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(b) In every smooth chart, the component functions of ω are smooth.

(c) Each point of M is contained in some coordinate chart in which ω has smooth
component functions.

(d) For every X ∈ X∗(M), the function ω(X) : M → R is smooth.

(e) For every open subset U ⊆ M and every smooth vector field X on U , the function
ω(X) : U → R is smooth.

Proof. See [Exercise Sheet 13, Exercise 1].

Of course, since any open subset of a smooth manifold is again a smooth manifold,
Proposition 8.5 applies equally well to covector fields defined only on some open subset
of M .

Example 8.6. For any smooth chart
(
U, (xi)

)
, the coordinate covector fields (λi) defined

above constitute a local coframe over U , called a coordinate coframe. By Proposition 8.5,
every coordinate coframe is smooth, because its component functions in the given chart
are constants.

More generally, if (Ei) is a (rough) local frame for TM over an open subset U ⊆ M ,
then there is a uniquely determined (rough) local coframe (εi) over U such that

(
εi|p
)
is

the dual basis to (Ei|p) for each p ∈ U , or equivalently εi(Ej) = δij. This coframe is called
the coframe dual to (Ei). Conversely, if (ε

i) is a (rough) local coframe over an open subset
U ⊆ M , then there is a uniquely determined (rough) local frame (Ei) for TM over U ,
called the frame dual to (εi) and determined by εi(Ej) = δij. For example, in a smooth

chart, the coordinate frame
(
∂
∂xi

)
and the coordinate coframe (λi) are dual to each other.

Lemma 8.7. Let M be a smooth manifold. If (Ei) is a rough local frame over an open
subset U ⊆ M and if (εi) is its dual coframe, then (Ei) is smooth if and only if (εi) is
smooth.

Proof. It suffices to show that for each p ∈ U , the frame (Ei) is smooth in a neighborhood
of p if and only if (εi) is. Given p ∈ U , let

(
V, (xi)

)
be a smooth coordinate chart such

that p ∈ V ⊆ U and write

Ei = aki
∂

∂xk
and εj = bjℓ λ

ℓ

for some matrices of real-valued functions aki and bjℓ defined on V . By virtue of Propo-
sitions 7.2 and 8.5, the vector fields Ei are smooth on V if and only if the functions aki
are smooth, and the covector fields εj are smooth on V if and only if the functions bℓj are

smooth. The fact that εj(Ei) = δji implies that the matrices (aki ) and (bℓj) are inverses to
each other. Since matrix inversion is a smooth map GL(n,R) → GL(n,R), we conclude
that either one of these matrix-valued functions is smooth if and only if the other one is
smooth.
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8.1.4 The Differential of a Smooth Function

The most important application of covector fields is that they enable us to interpret in
a coordinate-independent way the partial derivatives of a smooth function as the compo-
nents of a covector field.

Let f ∈ C∞(M). We define a covector field df , called the differential of f at p ∈ M ,
by

dfp(v) = vf, v ∈ TpM.

Proposition 8.8. The differential of a smooth function is a smooth covector field.

Proof. It is straightforward to check that dfp ∈ T∗
pM for all p ∈ M . To verify that df is

smooth we apply Proposition 8.5(d): for any X ∈ X(M), the function df(X) is smooth,
because it is equal to Xf (see Proposition 7.4).

For a smooth real-valued function f : M → R on a smooth manifold M , we now have
two different definitions for the differential of f at p ∈ M . In Chapter 3 we defined dfp
as a linear map TpM → Tf(p)R, while here we defined dfp as a covector at p ∈M , i.e., a
linear map TpM → R. These are really the same object, once we take into account the
canonical identification between Tf(p)R and R; one easy way to see this is to note that
both are represented in coordinates by the row matrix whose components are the partial
derivatives of f . (Let us verify this below for df defined as above.)

Let us compute the coordinate representation of df . Let (xi) be smooth coordinates
on an open subset U ⊆ M and let (λi) be the corresponding coordinate coframe on U .
Write df in coordinates as dfp = Ai(p)λ

i|p for some functions Ai : U → R. Then the
definition of df implies

Ai(p) = dfp

(
∂

∂xi

∣∣∣∣
p

)
=

∂

∂xi

∣∣∣∣
p

f =
∂f

∂xi
(p) ,

which yields the following formula for the coordinate representation of df :

dfp =
∂f

∂xi
(p)λi

∣∣
p
. (8.3)

Thus, the component functions of df in any smooth coordinate chart are the partial
derivatives of (the coordinate representation of) f with respect to those coordinates. Due
to this, we can think of df as an analogue of the classical gradient (the vector field in
Rn whose components are the partial derivatives of the function), reinterpreted in a way
that makes coordinate-independent sense on a manifold.

If we apply (8.3) to the special case in which f is one of the coordinate functions
xj : U → R, we obtain

dxj
∣∣
p
=
∂xj

∂xi
(p)λi

∣∣
p
= δji λ

i
∣∣
p
= λj

∣∣
p
;

in other words, the coordinate vector field λj is none other than the differential dxj.
Therefore, (8.3) can be rewritten as

dfp =
∂f

∂xi
(p) dxi

∣∣
p
, p ∈ U,
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or as an equation between covector fields instead of covectors

df =
∂f

∂xi
dxi . (8.4)

In particular, in the 1-dimensional case, this reduces to

df =
df

dx
dx .

Thus, we have recovered the familiar classical expression for the differential of a function
f in coordinates. Henceforth, we abandon the notation λi for the coordinate coframe, and
use dxi instead.

Example 8.9. If

f : R2 → R, (x, y) 7→ x2y cosx,

then

df =
∂(x2y cosx)

∂x
dx+

∂(x2y cosx)

∂y
dy

= (2xy cosx− x2y sinx) dx+ (x2 cosx) dy .

Proposition 8.10 (Properties of the differential). Let M be a smooth manifold and let
f, g ∈ C∞(M). The following statements hold:

(a) If a, b ∈ R, then d(af + bg) = a df + b dg.

(b) d(fg) = f dg + g df .

(c) d(f/g) = (g df − f dg)/g2 on the set where g ̸= 0.

(d) If J ⊆ R is an interval containing the image of f and if h : J → R is a smooth
function, then d(h ◦ f) = (h′ ◦ f) df .

(e) If f is constant, then df = 0. Conversely, if df = 0, then f is constant on each
connected component of M .

Proof. See [Exercise Sheet 13, Exercise 2].

8.1.5 Pullback of Covector Fields

Definition 8.11. Let F : M → N be a smooth map and let p ∈ M . The differential (or
tangent map) dFp : TpM → TF (p)N yields a dual linear map dF ∗

p : T
∗
F (p)N → T∗

pM , called

the (pointwise) pullback by F at p (or the cotangent map of F at p) and characterized by

dF ∗
p (ω)(v) = ω

(
dFp(v)

)
, ω ∈ T∗

F (p)N, v ∈ TpM.

Unlike vector fields, whose pushforwards are defined only in certain special cases (see,
e.g., Subsection 7.1.2), covector fields always pullback to covector fields.
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Definition 8.12. Let F : M → N be a smooth map and let ω : N → T∗N be a rough
covector field on N . We define a rough covector field F ∗ω : M → T∗M on M , called the
pullback of ω by F , by

(F ∗ω)p = dF ∗
p (ωF (p)). (8.5)

It acts on a vector v ∈ TpM by

(F ∗ω)p(v) = ωF (p)

(
dFp(v)

)
.

Proposition 8.13. Let F : M → N be a smooth map and let ω be a (continuous) covector
field on N . If u : N → R is a continuous function, then

F ∗(uω) = (u ◦ F )F ∗ω.

If additionally u is smooth, then

F ∗(du) = d(u ◦ F ).

Proof. We have

F ∗(uω)p
(8.5)
== dF ∗

p

(
(uω)F (p)

)
= dF ∗

p

(
u(F (p))ωF (p)

)
lin.
== u(F (p)) dF ∗

p

(
ωF (p)

) (8.5)
== (u ◦ F )(p) (F ∗ω)p

=
(
(u ◦ F )(F ∗ω)

)
p
,

which proves the first statement. Now, for the second statement, if p ∈M and v ∈ TpM ,
then

(F ∗du)p(v)
(8.5)
==

(
dF ∗

p (duF (p))
)
(v)

dfn
== duF (p)

(
dFp(v)

)
dfn of du
=====

(
dFp(v)

)
u

dfn of dFp
===== v(u ◦ F )

dfn of d(u◦F )
======= d(u ◦ F )p(v) ,

im
m
ed

ia
te
ly

u
si
n
g
E
S
4
E
1
(b

)
a
n
d
th

e
id
en

ti
fi
c.

which yields the second statement.

Proposition 8.14. Let F : M → N be a smooth map and let ω be a (continuous) covector
field on N . Then F ∗ω is a (continuous) covector field on M , and if ω is smooth, then so
is F ∗ω.

Proof. Fix p ∈ M and choose smooth coordinates (yj) for N in a neighborhood V of
F (p). Set U = F−1(V ) and observe that U is a neighborhood of p in M . Writing ω in
coordinates as ω = ωj dy

j for (continuous) functions on V and using Proposition 8.13
twice (for F |U), we compute that

F ∗ω = F ∗(ωj dy
j) = (ωj ◦ F )F ∗ dyj = (ωj ◦ F ) d(yj ◦ F ) . (8.6)

In view of Proposition 8.8, this expression is continuous, and it is smooth when ω is
smooth, so we are done.
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Formula (8.6) for the pullback of a covector field can also be written in the following
way:

F ∗ω = (ωj ◦ F ) d(yj ◦ F ) = (ωj ◦ F ) dF j ,

where F j is the j-th component function of F in these coordinates. Using either of these
formulas, the computation of pullbacks in coordinates is quite simple.

Example 8.15. Consider the smooth map

F : R3 → R2, (x, y, z) 7→ (x2y, y sin z) = (u, v)

and the smooth covector field

ω = u dv + v du ∈ X∗(R2) .

According to (8.6), we have

F ∗ω = (u ◦ F ) d(u ◦ F ) + (v ◦ F ) d(v ◦ F )

= (x2y) d(y sin z) + (y sin z) d(x2y)

= (x2y)(sin z dy + y cos z dz) + y sin z (2xy dx+ x2 dy)

= (2xy2 sin z) dx+ (2x2y sin z) dy + (x2y2 cos z) dz .

In other words, to compute F ∗ω, all we need to do is substitute the component func-
tions of F for the coordinate functions of N everywhere they appear in ω.

Remark 8.16. Let F : M → N and G : N → P be smooth maps between smooth
manifolds (with or without boundary) and let η ∈ X∗(P ). Then(

G ◦ F
)∗
η = F ∗(G∗η).

Indeed, given p ∈M and v ∈ TpM , using [Exercise Sheet 4, Exercise 1(b)] we obtain(
F ∗(G∗η)

)
p
(v) = (G∗η)F (p)

(
dFp(v)

)
= ηG(F (p))

(
dGF (p)

(
dFp(v)

))
= η(G◦F )(p)

(
d
(
G ◦ F

)
p
(v)
)
=
((
G ◦ F

)∗
η
)
p
(v),

which yields the assertion.

8.1.6 Covector Fields and Submanifolds

In Subsection 7.1.3 we considered the conditions under which a (smooth) vector field
restricts to a submanifold. The restriction of a (smooth) covector field to a submanifold
is much simpler and will be briefly discussed below.

Let M be a smooth manifold, let S ⊆M be an immersed submanifold and let ι : S ↪→
M be the inclusion map. If ω ∈ X∗(M), then ι∗ω ∈ X∗(S). More precisely, given p ∈ S
and v ∈ TpS, we have

(ι∗ω)p v = ωp
(
dιp(v)

)
= ωp(v),
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since dιp : TpS → TpM is just the inclusion map under our usual identification of TpS
with the subspace dιp(TpS) of TpM . Thus, ι∗ω is just the restriction of ω to vectors
tangent to S. For this reason, ι∗ω is often called the restriction of ω to S. Note, however,
that ι∗ω might equal zero at a given point of S, even though considered as a covector field
on M , ω might not vanish there. For example:

Example 8.17. Consider ω = dy ∈ X∗(R2) and let S : (y = 0) be the x-axis, considered
as an embedded submanifold of R2. As a covector field on R2, ω is clearly nonzero
everywhere, because one of its components is always equal to 1. However, the restriction
ι∗ω of ω to S is identically zero, because y vanishes identically on S:

ι∗ω = ι∗ dy = d(y ◦ ι) = 0.

To distinguish the two ways in which we might interpret the statement “ω vanishes
on S”, one usually says that ω vanishes along S (or vanishes at points of S) if ωp = 0 for
every p ∈ S. The weaker condition that ι∗ω = 0 is expressed by saying that the restriction
of ω to S vanishes (or the pullback of ω to S vanishes).

8.2 Differential k-Forms

Definition 8.18. Let M be a smooth n-manifold and fix k ∈ N.

(a) We define the bundle of covariant k-tensors on M by

Tk(T∗M) :=
⊔
p∈M

Tk(T∗
pM)

with the obvious projection map. It can be shown (exercise!) that it is a smooth
vector bundle of rank nk overM . Its (smooth) sections are called (smooth) covariant
k-tensor fields on M .

(b) The subset of Tk(T∗M) consisting of alternating k-tensors is defined as:∧k(T∗M) :=
⊔
p∈M

∧k(T∗
pM).

It can be shown (exercise!) that
∧k(T∗M) is a smooth subbundle of Tk(T∗M),

and thus it is a smooth vector bundle of rank
(
n
k

)
over M . Its sections are called

(differential) k-forms on M ; they are (continuous) tensor fields whose value at each
point is an alternating k-tensor. The integer k is called the degree of the form. We
denote the vector space of smooth (differential) k-forms by

Ωk(M) := Γ
(∧k(T∗M)

)
.

⇝ A 0-form is a continuous real-valued function on M , because∧0(T∗M) =
⊔
p∈M

∧0(T∗
pM) ∼=

⊔
p∈M

R =M × R,

see [Exercise Sheet 10, Exercise 3(c)].
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⇝ A 1-form is a continuous covector field on M , because∧1(T∗M) =
⊔
p∈M

∧1(T∗
pM) ∼=

⊔
p∈M

T∗
pM = T∗M.

The wedge product of two differential forms is defined pointwise:

(ω ∧ η)p = ωp ∧ ηp .

Thus, the wedge product of a k-form with an ℓ-form is a (k + ℓ)-form. In particular, if f
is a 0-form and if η is a k-form, then we interpret the wedge product f ∧ η to mean the
ordinary product fη; see (6.1).

If we define

Ω∗(M) =
n⊕
k=0

Ωk(M),

then the wedge product turns Ω∗(M) into an associative, anti-commutative, graded R-
algebra.

In any smooth chart
(
U, (xi)

)
, a k-form ω can be written as

ω =
∑
I

′
ωI dx

i1 ∧ . . . ∧ dxik =
∑
I

′
ωI dx

I ,

where the coefficients ωI are smooth functions defined on the coordinate domain U , and
we use dxI as an abbreviation for dxi1 ∧ . . . ∧ dxik (where I = (i1, . . . , in)) and the
primed summation sign denotes a sum over only increasing multi-indices. According to
Proposition 6.14, ω is smooth if and only if the component functions ωI are smooth. Since

dxi1 ∧ . . . ∧ dxik
( ∂

∂xj1
, . . . ,

∂

∂xjk

)
= δIJ

by Lemma C.20, the component functions ωI of ω are determined by

ωI = ω
( ∂

∂xi1
, . . . ,

∂

∂xik

)
.

8.2.1 Pullback of k-Forms

If F : M → N is a smooth map and if ω is a differential k-form on N , then F ∗ω is a
differential k-form on M , defined as follows:

(F ∗ω)p(v1, . . . , vk) := ωF (p)

(
dFp(v1), . . . , dFp(vk)

)
.

Lemma 8.19. The following statements hold:

(a) F ∗ : Ωk(N) → Ωk(M) is linear over R.

(b) F ∗(ω ∧ η) = F ∗ω ∧ F ∗η.

(c) In any smooth chart (V, (yi)) for N , we have

F ∗
(∑

I

′
ωI dy

i1 ∧ . . . ∧ dyik
)
=
∑
I

′
(ωI ◦ F ) d(yi1 ◦ F ) ∧ . . . ∧ d(yik ◦ F ).
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Proof. See [Exercise Sheet 14, Exercise 1].

This lemma gives a computational rule for pullbacks of differential forms similar to
the one we developed earlier for covector fields, see (8.6).

Example 8.20. Consider the smooth function

F : R2 → R3, (u, v) 7→ (u, v, u2 − v2)

and the smooth 2-form

ω = y dx ∧ dz + x dy ∧ dz ∈ Ω2(R3) .

Then

F ∗ω = F ∗(y dx ∧ dz + x dy ∧ dz
)

= v du ∧ d(u2 − v2) + u dv ∧ d(u2 − v2)

= v du ∧ (2u du− 2v dv) + u dv ∧ (2u du− 2v dv)
du∧du=0
=====
dv∧dv=0

= −2v2 du ∧ dv + 2u2 dv ∧ du
du∧dv=
=====
−dv∧du

= −2(u2 + v2) du ∧ dv.

Proposition 8.21 (Pullback formula for top forms). Let F : M → N be a smooth map
between smooth n-manifolds. If (xi) and (yj) are smooth coordinates on open subsets
U ⊆ M and V ⊆ N , respectively, and if u is a real-valued function on V , then the
following holds on U ∩ F−1(V ):

F ∗(u dy1 ∧ . . . ∧ dyn
)
= (u ◦ F ) detDF

(
dx1 ∧ . . . ∧ dxn

)
, (8.7)

where DF represents the Jacobian matrix of F in these coordinates.

Proof. Since the fiber of
∧n(T∗M) is spanned by dx1∧. . .∧dxn at each point, it suffices to

show that both sides of (8.7) agree when evaluated on
(

∂
∂x1
, . . . , ∂

∂xn

)
. By Lemma 8.19(c)

we have
F ∗(u dy1 ∧ . . . ∧ dyn

)
= (u ◦ F ) d(y1 ◦ F︸ ︷︷ ︸

F 1

) ∧ . . . ∧ d(yn ◦ F︸ ︷︷ ︸
Fn

),

so by Proposition C.25(c)(d) we obtain

F ∗(u dy1 ∧ . . . ∧ dyn
)( ∂

∂x1
, . . . ,

∂

∂xn

)
= (u ◦ F )

(
dF 1 ∧ . . . ∧ dF n

)( ∂

∂x1
, . . . ,

∂

∂xn

)
= (u ◦ F ) det

(
dF j

( ∂

∂xi

))
= (u ◦ F ) detDF

(
dx1 ∧ . . . ∧ dxn

)( ∂

∂x1
, . . . ,

∂

∂xn

)
︸ ︷︷ ︸

=1

,

as desired.
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Corollary 8.22. If
(
U, (xi)

)
and

(
Ũ , (x̃j)

)
are overlapping smooth coordinate charts on

a smooth manifold M , then the following identity holds on U ∩ Ũ :

dx̃1 ∧ . . . ∧ dx̃n = det
(∂x̃j
∂xi

)
dx1 ∧ . . . ∧ dxn .

Proof. Apply Proposition 8.21 for F = IdU∩Ũ , but using coordinates (xi) in the domain
and (x̃j) in the codomain.

8.2.2 The Exterior Derivative

We now define a natural differential operator on smooth forms, called the exterior deriva-
tive, which is a generalization of the differential of a function. More precisely, for each
smooth manifold M , we will show that there is a differential operator d: Ωk(M) →
Ωk+1(M) satisfying d(dω) = 0 for all ω.

The definition of d on Euclidean space is straightforward: if ω =
∑′

J ωJ dx
J is a

smooth k-form on an open subset U ⊆ Rn, its exterior derivative dω is defined to be the
following (k + 1)-form

d

(∑
J

′
ωJ dx

J

)
=
∑
J

′
dωJ ∧ dxJ , (8.8)

where dωJ is the differential of the smooth function ωJ , see Subsection 8.1.4. In somewhat
more detail, this is

d

(∑
J

′
ωJ dx

j1 ∧ . . . ∧ dxjk
)

=
∑
J

∑
i

∂ωJ
∂xi

dxi ∧ dxj1 ∧ . . . ∧ dxjk .

For instance, for a smooth 0-form f we have

df =
∂f

∂xi
dxi ,

which is just the differential of f , see (8.4), while for a smooth 1-form ω = ωj dx
j we

compute that

dω =
∑
i<j

(∂ωj
∂xi

− ∂ωi
∂xj

)
dxi ∧ dxj.

In order to transfer this definition to manifolds, we first need to check that it satisfies
the following properties.

Proposition 8.23 (Properties of the exterior derivative on Rn).

(a) d is R-linear.

(b) If ω is a smooth k-form and η is a smooth ℓ-form on an open subset U ⊆ Rn, then

d(ω ∧ η) = dω ∧ η + (−1)k ω ∧ dη.

(c) d ◦ d ≡ 0.
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(d) d commutes with pullbacks: If F : U ⊆ Rn → V ⊆ Rm is a smooth map between
open subsets of Euclidean spaces, and if ω ∈ Ωk(V ), then

F ∗(dω) = d(F ∗ω).

Proof.

(a) Follows immediately from the definition.

(b) Due to (a), it suffices to consider terms of the form ω = u dxI ∈ Ωk(U) and η =
v dxJ ∈ Ωℓ(U), where u, v ∈ C∞(U).

� Claim: For any multi-index I we have

d(u dxI) = du ∧ dxI .

� Proof: If I has repeated indices, then clearly d(u dxI) = 0 = du ∧ dxI . Otherwise, let
σ be a permutation sending I to an increasing multi-index J . Then

d(u dxI) = sgn(σ) d(u dxJ) = sgn(σ) du ∧ dxJ = du ∧ dxI .

Using the claim, we compute

d(ω ∧ η) = d
(
(u dxI) ∧ (v dxJ)

)
= d(uv dxI ∧ dxJ)

dfn
== (v du+ u dv) ∧ dxI ∧ dxJ

dv∧dxI=
=========
(−1)kdxI∧dv

= (du ∧ dxI) ∧ (v dxJ) + (−1)k(u dxI) ∧ (dv ∧ dxJ)

Claim
=== d(u dxI︸ ︷︷ ︸

=ω

) ∧ (v dxJ︸ ︷︷ ︸
= η

) + (−1)k(u dxI︸ ︷︷ ︸
=ω

) ∧ d(v dxJ︸ ︷︷ ︸
= η

) .

(c) We first deal with the case of a smooth 0-form u:

d(du) = d
( ∂u
∂xi

dxi
)
=

∂2u

∂xi∂xj
dxi ∧ dxj

dxi∧dxi=0
======

=
∑
i<j

( ∂2u

∂xi∂xj
− ∂2u

∂xj∂xi

)
dxi ∧ dxj

= 0
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Let us now deal with the general case (u =
∑′

J ωJ dx
J ∈ Ωk(U)):

d(du) = d

(∑
J

′
dωJ ∧ dxj1 ∧ . . . ∧ dxjk

)
(a)
==
(b)

∑
J

′

��
���*

0 by case k=0

d(dωJ) ∧ dxj1 ∧ . . . ∧ dxjk +

+
∑
J

′
(−1) · dωJ ∧ d

�����������:
0 by (b) and
by case k=0(

dxj1 ∧ . . . ∧ dxjk
)

= 0 .

(d) Due to (a), it suffices to consider ω = u dxi1 ∧ . . . ∧ dxik . We have

F ∗(d(u dxi1 ∧ . . . ∧ dxik)
)
= F ∗(du ∧ dxi1 ∧ . . . ∧ dxik)

Lemma 8.19(b)(c)&
===========
Proposition 8.13

= d(u ◦ F ) ∧ d(xi1 ◦ F ) ∧ . . . ∧ d(xik ◦ F ) (∗)1
==

= d
(
(u ◦ F ) d(xi1 ◦ F ) ∧ . . . ∧ d(xik ◦ F )

) Lemma 8.19(c)
=========

= d
(
F ∗(u dxi1 ∧ . . . ∧ dxik)

)
.

Example 8.24. Let us compute the exterior derivatives of arbitrary 1-forms and 2-forms
on R3.

• Any smooth 1-form ω on R3 can be written as

ω = P dx+Q dy +R dz

for some smooth functions P,Q,R on R3. Using (8.8) and the fact that the wedge product
of any 1-form with itself is zero, we compute

dω = dP ∧ dx+ dQ ∧ dy + dR ∧ dz

=

(
∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz

)
∧ dx +

+

(
∂Q

∂x
dx+

∂Q

∂y
dy +

∂Q

∂z
dz

)
∧ dy +

(
∂R

∂x
dx+

∂R

∂y
dy +

∂R

∂z
dz

)
∧ dz

=

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy +

(
∂R

∂x
− ∂P

∂z

)
dx ∧ dz +

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz .

1(∗): We have an expression of the form df ∧ η, where η = dg1 ∧ . . . ∧ dgk (with f = u ◦ F and
gℓ = xiℓ ◦ F ), so

d(fη)
p. 87
=== d(f ∧ η) (b)

== df ∧ η + (−1)0 f ∧ dη = df ∧ η,

since dη = 0 by (b) and (c).
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• Any smooth 2-form η on R3 can be written as

η = u dx ∧ dy + v dx ∧ dz + w dy ∧ dz

for some smooth functions u, v, w on R3. Similarly, we compute

dη =

(
∂u

∂z
− ∂v

∂y
+
∂w

∂x

)
dx ∧ dy ∧ dz .

Theorem 8.25 (Existence and uniqueness of exterior differentiation). Let M be a smooth
manifold. For each k ∈ N there are unique operators

d: Ωk(M) → Ωk+1(M) ,

called exterior differentiation, satisfying the following properties:

(a) d is R-linear.

(b) If ω ∈ Ωk(M) and η ∈ Ωℓ(M), then

d(ω ∧ η) = dω ∧ η + (−1)k ω ∧ dη.

(c) d ◦ d ≡ 0.

(d) For f ∈ Ω0(M) = C∞(M), df is the differential of f , given by df(X) = Xf .

In any smooth chart, d is given by (8.8).

Proof.

� Existence: Given ω ∈ Ωk(M), for each smooth chart (U,φ) for M , we set

dω := φ∗ d
(
(φ−1)

∗
ω
)
. (8.9)

This is well-defined, since for any other smooth chart (V, ψ) for M , the map φ ◦ ψ−1 is a
diffeomorphism between open subsets of Rn, so

ψ∗ d
(
(ψ−1)

∗
ω
)
= (φ−1 ◦ φ︸ ︷︷ ︸

Id

)∗ ψ∗ d
(
(ψ−1)

∗
ω
)

= φ∗ (φ−1)∗ ψ∗ d
(
(ψ−1)

∗
ω
) (φ−1)∗ψ∗=(ψ◦φ−1)∗

============
&Proposition 8.23(d)

= φ∗ d
(
(ψ ◦ φ−1)

∗
(ψ−1)

∗︸ ︷︷ ︸
(ψ−1 ◦ψ ◦φ−1)∗

ω
)

= φ∗ d
(
(φ−1)

∗
ω
)
.

Moreover, d satisfies (a) - (d) by virtue of Proposition 8.23.

� Uniqueness : Suppose that d is any operator satisfying (a) - (d). We first show that d is
determined locally: if ω1 and ω2 are k-forms that agree on an open subset U ⊆ M , then
dω1 = dω2 on U . Indeed, let p ∈ U , set η := ω1 − ω2 and let ψ ∈ C∞(M) be a smooth
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bump function that is identically 1 on some neighborhood of p and supported in U . Then
ψη is identically zero, so (a) - (d) imply that 0 = d(ψη) = dψ ∧ η+ψ dη. Evaluating this
at p and using that ψ(p) = 1 and dψp = 0, we conclude that 0 = dηp = dω1|p − dω2|p,
which proves the assertion.

Now let ω ∈ Ωk(M) and let (U,φ) be a smooth chart forM . We write ω in coordinates
as
∑′

I ωI dx
I . For any p ∈ U by means of a smooth bump function we construct global

smooth functions ω̃I and x̃i on M that agree with ωI and dxi in a neighborhood of p.
By virtue of (a) - (d), together with the observation in the previous paragraph, it follows
that (8.8) holds at p. Since p was arbitrary, this d must be equal to the one we defined
above.

Comment: The preceding theorem can be summarized by saying that the differential on
functions extends uniquely to an anti-derivation of Ω∗(M) of degree +1 whose square is
zero.

Proposition 8.26 (Naturality of exterior derivative). If F : M → N is a smooth map,
then for each k the pullback map F ∗ : Ωk(N) → Ωk(M) commutes with d, i.e.,

F ∗(dω) = d(F ∗ω), ∀ω ∈ Ωk(N).

Proof. We apply Proposition 8.23(d) to the coordinate representation ψ ◦ F ◦ φ−1 of F
and, using (8.9), on U ∩ F−1(V ) we obtain

F ∗(dω) = F ∗ψ∗ d
(
(ψ−1)

∗
ω
)

= φ∗ (ψ ◦ F ◦ φ−1)
∗
d
(
(ψ−1)

∗
ω
)

= φ∗ d
(
(ψ ◦ F ◦ φ−1)

∗
(ψ−1)

∗
ω
)

= φ∗ d
(
(φ−1)

∗
(F ∗ω)

)
= d(F ∗ω).

Definition 8.27. Let M be a smooth manifold and let ω ∈ Ωk(M). We say that ω is
closed if dω = 0, and exact if there exists η ∈ Ωk−1(M) such that ω = dη.

Remark 8.28. Every exact form is closed, since d◦d ≡ 0, but the converse does not hold
in general, see Example 11.27. However, it can be shown that closed forms are locally
exact (but not necessarily globally), so the question of whether a given closed form is
exact depends on global properties of the manifold.



CHAPTER 9

MANIFOLDS WITH BOUNDARY

We briefly discuss manifolds with boundary. They play a central role in the theory of
integration on manifolds, which will be developed in Chapter 11.

9.1 Topological Manifolds with Boundary

Definition 9.1. The closed n-dimensional upper half-space Hn ⊆ Rn is defined as

Hn =
{
(x1, . . . , xn) ∈ Rn | xn ≥ 0

}
.

The interior and the boundary of Hn as a subset of Rn are denoted by IntHn and ∂Hn,
respectively.

If n > 0, then

IntHn =
{
(x1, . . . , xn) ∈ Rn

∣∣ xn > 0
}
,

∂Hn =
{
(x1, . . . , xn) ∈ Rn

∣∣ xn = 0
}
,

whereas if n = 0, then
H0 = R0 = {0} and ∂H0 = ∅ .

Definition 9.2. An n-dimensional topological manifold with boundary is a second-coun-
table, Hausdorff topological space M in which every point has a neighborhood homeo-
morphic either to an open subset of Rn or to a (relatively) open subset of Hn.

An open subset U ⊆ M together with a map φ : U → Rn that is a homeomorphism
onto an open subset of Rn or Hn is called a chart for M . When it is necessary to make the
distinction, we call (U,φ) an interior chart for M if φ(U) is an open subset of Rn (which
includes the case of an open subset of Hn that does not intersect ∂Hn), and a boundary
chart for M if φ(U) is a open subset of Hn such that φ(U) ∩ ∂Hn ̸= ∅.

A point p ∈ M is called an interior point of M if it is in the domain of some interior
chart, and a boundary point of M if it is in the domain of a boundary chart that sends p to
∂Hn. The set of all boundary points ofM is denoted by ∂M and is called the boundary of
M , while the set of all interior points of M is denoted by IntM and is called the interior
of M .

95
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Theorem 9.3 (Topological invariance of the boundary). If M is a topological manifold
with boundary, then each point of M is either a boundary point or an interior point, but
not both. Thus, ∂M and IntM are disjoint sets whose union is M .

Example 9.4.

(1) Every interval in R is a connected topological 1-manifold with boundary, whose man-
ifold boundary consists of its endpoints (if any).

(2) The closed unit ball Bn ⊆ Rn is a connected topological n-manifold with boundary,
whose (manifold) boundary is Sn−1 and whose interior is Bn; see [Lee13, Problem 1.11].

Proposition 9.5. Let M be a topological manifold with boundary.

(a) IntM is an open subset of M and a topological n-manifold without boundary.

(b) ∂M is a closed subset of M and a topological (n− 1)-manifold without boundary.

(c) M is a topological manifold (in the sense of Definition 1.1) if and only if ∂M = ∅.

Proof. Exercise!

9.2 Smooth Manifolds with Boundary

If U is an open subset of Hn, then a map F : U → Rk is said to be smooth if for each
x ∈ U there exists an open subset Ũ ⊆ Rn containing x and a smooth map F̃ : Ũ → Rk

that agrees with F on Ũ ∩U . If F is such a map, then the restriction of F to U ∩ IntHn is
smooth in the usual sense. By continuity, all partial derivatives of F at points of U∩IntHn

are determined by their values in IntHn, and thus in particular are independent of the
choice of extension.

Definition 9.6. Let M be a topological manifold with boundary. A smooth structure for
M is defined to be a maximal smooth atlas (a collection of charts whose domains coverM
and whose transition maps (and their inverses) are smooth in the sense just described).
With such a structure, M is called a smooth manifold with boundary .

In the following lengthy remark we collect some basic definitions and facts about
smooth manifolds with boundary, referring to [Lee13] for further information.

Remark 9.7.

(1) Cf. Chapter 2: Smoothness of a map F : M → N between manifolds with boundary
is defined in the same way (see Definition 2.4), with the usual understanding that a map
whose domain is a subset of Hn is smooth if it admits an extension to a smooth map in
a neighborhood of each point, and a map whose codomain is a subset of Hn is smooth if
it is smooth as a map into Rn.

Smooth partitions of unity exist on smooth manifolds with boundary.
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(2) Cf. Chapter 3: If M is a smooth n-manifold with boundary, then the tangent space
TpM to M at p ∈ M is defined in the same way (see Definition 3.4), and it is an n-
dimensional R-vector space. For any smooth chart (U, (xi)) containing p, the coordinate
vectors

∂

∂x1

∣∣∣∣
p

, . . . ,
∂

∂xn

∣∣∣∣
p

(where ∂
∂xn

∣∣
p
should be interpreted as a one-sided derivative when p ∈ ∂M) form a basis

for TpM .

Let M be a smooth manifold with boundary and let p ∈ ∂M . It is intuitively evident
that the vectors in TpM can be separated in three classes: those tangent to the boundary,
those pointing inward, and those pointing outward. Formally, we make the following
definition:

Definition: If p ∈ ∂M , then the vector v ∈ TpM \ Tp∂M it said to be inward-pointing
if for some ε > 0 there exists a smooth curve γ : [0, ε) → M such that γ(0) = p and
γ′(0) = v, and it is called outward-pointing if there exists such a curve with domain
(−ε, 0].

Proposition: Let M is a smooth manifold with boundary, p ∈ ∂M , and (xi) be any
smooth boundary coordinates defined on a neighborhood of p. The inward-pointing vec-
tors in TpM are precisely those with positive xn-component, the outward-pointing ones
are those with negative xn-component, and the ones tangent to ∂M are those with zero
xn-component. Thus, TpM is the disjoint union of Tp∂M , the set of inward-pointing
vectors, and the set of outward-pointing vectors. Finally, v ∈ TpM is inward-pointing if
and only if −v is outward-pointing.

The differential of a smooth map F : M → N between manifolds with boundary is
defined in the same way (see Definition 3.6) and has the same representation in coordinates
bases.

(3) Cf. Chapter 4: Submersions, immersions, embeddings and local diffeomorphisms are
defined in the same way (see Definitions 4.2 and 4.7(b)), and there is a version of the rank
theorem in this setting (see [Lee13, Theorem 4.15 and Problem 4.3]).

(4) Cf. Chapter 5: Immersed and embedded submanifolds of smooth manifolds with
boundary are defined in the same way (see 5.1 and 5.12) and are themselves smooth
manifolds with (possibly empty) boundary.

⇝ For properties of (immersed) submanifolds with boundary, see [Lee13, Chapter 5,
Submanifolds with Boundary].

⇝ For a version of the regular level set theorem in this setting (cf. Theorem 5.9), see
[Lee13, Problem 5.23].

Theorem: IfM is a smooth n-manifold with boundary, then with the subspace topology,
∂M is a topological (n − 1)-manifold (without boundary), and has a unique smooth
structure such that it is a properly embedded submanifold of M .
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(5) Cf. Chapter 7: The tangent bundle of a smooth n-fold with boundary is defined in
the same way (see Definition 3.11) and it is a smooth vector bundle of rank n over the
given manifold (see Proposition 6.4). Vector fields are also defined in the same way (see
Definition 7.1), but flows in this setting need to be treated with extra care (see [Lee13,
Chapter 9, Flows and Flowouts on Manifolds with Boundary]).

Proposition: If M is a smooth manifold with boundary, then there exists a smooth
vector field on M whose restriction to ∂M is everywhere inward-pointing, and one whose
restriction to ∂M is everywhere outward-pointing.

(6) Cf. Chapter 8: The cotangent bundle T∗M (respectively the k-th exterior power∧k(T∗M) of the cotangent bundle) of a smooth n-manifoldM with boundary is defined in
the same way (see Definition 8.2, respectively Definition 8.18(b)), and it is a smooth vec-
tor bundle of rank n (respectively of rank

(
n
k

)
) over M (see Proposition 8.3, respectively

Definition 8.18(b)). Differential k-forms (0 ≤ k ≤ n) are also defined in the same way
(see Definition 8.18(b)), and so does their exterior derivative as well (see Theorem 8.25).



CHAPTER 10

ORIENTATIONS

The purpose of this chapter is to introduce a subtle but important property of smooth
manifolds, called orientation. An orientation of a line or a curve is simply a choice of direc-
tion along it. For 2-dimensional manifolds, an orientation is essentially a choice of which
rotational direction should be considered “clockwise” and which “counterclockwise”. For
3-dimensional ones, it is a choice between “left-handedness” and “right-handedness”. The
general definition of an orientation is an adaptation of these everyday concepts to arbitrary
dimensions.

10.1 Orientations of Vector Spaces

In this section we discuss orientations of vector spaces. We are all familiar with certain
informal rules for singling out preferred ordered bases of R1, R2, and R3. We usually
choose a basis for R1 that points to the right (i.e., in the positive direction). A natural
family of preferred ordered bases for R2 consists of those for which the rotation from the
first vector to the second is in the counterclockwise direction. And every student of vector
calculus encounters “right-handed” bases in R3: these are the ordered bases (E1, E2, E3)
with the property that when the fingers of your right hand curl from E1 to E2, your thumb
points in the direction of E3.

Although “to the right”, “counterclockwise”, and “right-handed” are not mathematical
terms, it is easy to translate the rules for selecting preferred bases of R1, R2, and R3 into
rigorous mathematical language: in all three cases, the preferred bases are the ones whose
transition matrices from the standard basis have positive determinants.

In an abstract vector space for which there is no canonical basis, we no longer have any
way to determine which bases are “correctly oriented”. For example, if V is the vector
space of polynomials in one real variable of degree at most 2, who is to say which of the
ordered bases (1, x, x2) and (x2, x, 1) is “right-handed”? All we can say in general is what
it means for two bases to have the “same orientation”. Thus, we are led to introduce the
following definition.

Definition 10.1. Let V be a real vector space of dimension n ≥ 1. We say that two or-
dered bases (E1, . . . , En) and (Ẽ1, . . . , Ẽn) for V are consistently oriented if the transition
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matrix (Bj
i )1≤i,j≤n, defined by

Ei =
∑
j

Bj
i Ẽj ,

has positive determinant.

Exercise 10.2: Show that being consistently oriented is an equivalence relation on the
set of all ordered bases of V , and show that there are exactly two equivalence classes.

Definition 10.3. Let V be a real vector space.

• If dimR V = n ≥ 1, we define an orientation for V as an equivalence class of ordered
bases. If (E1, . . . , En) is any ordered basis for V , then we denote the orientation
that it determines by [E1, . . . , En], and the opposite orientation by −[E1, . . . , En].

• If dimR V = 0, we define an orientation for V to be simply a choice of one of the
numbers ±1.

Definition 10.4. A vector space together with a choice of orientation is called an oriented
vector space. If V is oriented, then any ordered basis (E1, . . . , En) that is in the given
orientation is said to be positively oriented (or simply oriented). Any ordered basis that
is not in the given orientation is said to be negatively oriented .

Example 10.5. Consider the Euclidean space V = Rn. The orientation [e1, . . . , en] of
Rn determined by the standard basis {e1, . . . , en} is called the standard orientation. You
should convince yourself that, in our usual way of representing the axes graphically, an
oriented basis for R1 is one that points to the right; an oriented basis for R2 is one for which
the rotation from the first basis vector to the second is counterclockwise; and an oriented
basis for R3 is a right-handed one. (These can be taken as mathematical definitions for
the words “right”, “counterclockwise”, and “right-handed”.) The standard orientation
for R0 is defined to be +1.

There is an important connection between orientations and alternating tensors, which
is expressed in the following proposition.

Proposition 10.6. Let V be a real vector space of dimension n. Each nonzero element
ω ∈ Λn(V ∗) determines an orientation Oω of V as follows: if n ≥ 1, then Oω is the set
of ordered bases (E1, . . . , En) for V such that ω(E1, . . . , En) > 0, while if n = 0, then Oω

is +1 if ω > 0, and −1 if ω < 0. Moreover, two nonzero n-covectors on V determine the
same orientation if and only if each is a positive multiple of the other.

Proof. The 0-dimensional case is immediate, since a nonzero element of Λ0(V ∗) is just a
nonzero real number (as it is a function R0 → R). Thus, we may assume that n ≥ 1. Let
ω be a nonzero element of Λn(V ∗), and denote by Oω the set of ordered bases on which ω
gives positive values. We need to show that Oω is exactly one equivalence class.

Suppose (Ei) and (Ẽj) are any two ordered bases for V , and let B : V → V be the

linear map sending Ej to Ẽj for all j. This means that the matrix representation of B

with respect to (Ei) on the source and (Ẽj) on the target is the transition matrix between
the two bases. By Proposition C.22 we obtain

ω(Ẽ1, . . . , Ẽn) = ω(BE1, . . . , BEn) = (detB)ω(E1, . . . , En).
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It follows that the basis (Ẽj) is consistently oriented with (Ei) if and only if ω(Ẽ1, . . . , Ẽn)
and ω(E1, . . . , En) have the same sign, which is the same as saying that Oω is one equiv-
alence class. The last statement then follows easily (and is thus left as an exercise).

Definition 10.7. If V is an oriented n-dimensional real vector space and if ω is an n-
covector that determines the orientation of V as described in Proposition 10.6, then we
say that ω is a (positively) oriented n-covector .

For example, the n-covector ε1...n = ε1∧ · · · ∧ εn is positively oriented for the standard
orientation on Rn; see Lemma C.20(c).

Recall that if V is an n-dimensional real vector space, then the vector space Λn(V ∗) is
1-dimensional by Proposition C.21. Proposition 10.6 shows that choosing an orientation
for V is equivalent to choosing one of the two components of Λn(V ∗) \ {0}. This formu-
lation also works for 0-dimensional vector spaces, and explains why we have defined an
orientation of a 0-dimensional space in the way we did.

10.2 Orientations of Smooth Manifolds

In this section we briefly discuss the theory of orientations of smooth manifolds. They
have numerous applications, most notably in the theory of integration on manifolds, see
Chapter 11.

Definition 10.8. Let M be a smooth manifold with or without boundary. A pointwise
orientation on M is defined to be a choice of orientation of each tangent space.

By itself, this is not a very useful concept, because the orientations at nearby points
may have no relation to each other. For example, a pointwise orientation on Rn might
switch randomly from point to point between the standard orientation and its opposite.
In order for pointwise orientations to have some relationship with the smooth structure,
we need an extra condition to ensure that the orientations of nearby tangent spaces are
consistent with each other.

Definition 10.9. Let M be a smooth manifold with or without boundary, endowed with
a pointwise orientation. If (Ei) is a local frame for TM over an open subset U ⊆ M ,
then we say that (Ei) is positively oriented (or simply oriented) if (E1|p, . . . , En|p) is a
positively oriented ordered basis for TpM at each point p ∈ U ; see Definition 10.4. A
negatively oriented frame for TM over U ⊆M is defined analogously.

Definition 10.10. LetM be a smooth manifold with or without boundary (of dimension
n ≥ 1).

(a) A pointwise orientation on M is said to be continuous if every point of M is in the
domain of an oriented local frame for TM .

(b) An orientation of M is a continuous pointwise orientation.

(c) We say that M is orientable if there exists an orientation for it; otherwise we say
that M is nonorientable.
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Exercise 10.11: Let M be an oriented smooth manifold with or without boundary of
dimension n ≥ 1. Show that every local frame with connected domain is either positively
oriented or negatively oriented. Moreover, show that the connectedness assumption is
necessary.

Example 10.12. We give here some examples of orientable and nonorientable manifolds.

(1) Every parallelizable1 manifold is orientable. Indeed, if (E1, . . . , En) is a smooth
global frame for M , then we define a pointwise orientation on M by declaring the basis
(E1|p, . . . , En|p) for TpM to be positively oriented at each p ∈ M , and it is clear that
this pointwise orientation is continuous, because every point of M is in the domain of the
oriented smooth global frame (Ei). Therefore, for each n ∈ N, the Euclidean space Rn is
orientable.

(2) For each n ∈ N, the unit n-sphere Sn ⊆ Rn+1 is orientable. Indeed, this follows
from Proposition 10.21, because Sn is a hypersurface in Rn+1, to which the vector field
N = xi∂/∂xi is nowhere tangent. We define the standard orientation of Sn to be the one
determined by N . (The standard orientation of S0 is the one that assigns the orientation
+1 to the point +1 ∈ S0 and −1 to the point −1 ∈ S0.) Alternatively, this follows from
Proposition 10.23, because Sn is the boundary of the closed unit ball. (It can be checked
that the orientation thus induced on Sn is the standard one.)

(3) The so-called Möbius band is nonorientable; see [Lee13, Examples 10.3 and 15.38].

Definition 10.13. An oriented manifold (with or without boundary) is an orderer pair
(M,O), where M is an orientable smooth manifold (with or without boundary) and O is
a choice of orientation for M . For each p ∈ M , the orientation of TpM determined by O

is denoted by Op.

If M is zero-dimensional, then this definition just means that an orientation of M
is a choice of ±1 attached to each of its points. The continuity condition is vacuous in
this case, and the notion of oriented frames is not useful. Clearly, every 0-manifold is
orientable.

10.2.1 Two Ways of Specifying Orientations

The following two propositions, namely Proposition 10.14 and Proposition 10.18, give
ways of specifying orientations on manifolds that are more practical to use than the
definition.

Proposition 10.14 (The orientation determined by an n-form). Let M be a smooth
n-manifold with or without boundary. Any nonvanishing n-form ω on M determines a
unique orientation of M for which ω is positively oriented at each point. Conversely, if
M is given an orientation, then there is a smooth nonvanishing n-form on M that is
positively oriented at each point.

1A smooth manifoldM with or without boundary which admits a smooth global frame or, equivalently,
whose tangent bundle TM is the trivial smooth vector bundle of rank dimM (see [Exercise Sheet 10,
Exercise 5]) is called parallelizable. Note that the Euclidean space Rn is parallelizable, and it can also be
shown that S1, S3 and S7 are the only spheres that are parallelizable.



Section 10.2. Orientations of Smooth Manifolds 103

Proof.

“⇒”: Let ω be a nonvanishing n-form on M . By Proposition 10.6, ω defines a pointwise
orientation on M , so it remains to show that it is continuous. Since this is trivially true
for n = 0, we may assume that n ≥ 1. Given p ∈M , let (Ei) be any local frame for TM
over a connected open neighborhood U of p in M , and let (εi) be the dual coframe. The
expression for ω in this frame over U is

ω = f ε1 ∧ . . . ∧ εn

for some continuous function f on U . The fact that ω is nonvanishing means that f is
nonvanishing, and thus by Lemma C.20(c) we obtain

ωp (E1|p, . . . , En|p) = f(p) ̸= 0 for all p ∈ U.

Since U is connected, it follows that this expression is either always positive or always
negative on U , and therefore the given frame is either positively oriented or negatively
oriented. If the latter case holds, then we can replace E1 by −E1 to obtain a new frame
that is positively oriented. Hence, the pointwise orientation determined by ω is continuous.

“⇒”: We refer to [Lee13, Proposition 15.5] for the details.

Due to Proposition 10.14, we may now give the following definition.

Definition 10.15. Let M be a smooth n-manifold with or without boundary. Any
nonvanishing n-form on M is called an orientation form. If M is oriented and if ω is an
orientation form determining the given orientation, then we also say that ω is positively
oriented (or simply oriented).

If M is zero-dimensional, then a nonvanishing 0-form (i.e., a nonvanishing smooth
real-valued function) on M assigns the orientation +1 to points where it is positive and
−1 to points where it is negative.

Remark 10.16. It is straightforward to check (see Proposition 10.6) that if ω and ω̃ are
two positively oriented smooth n-forms on M , then ω̃ = fω for some strictly positive
smooth real-valued function f on M .

Definition 10.17.

(a) A smooth coordinate chart
(
U, (xi)

)
on an oriented smooth manifold with or without

boundary is said to be positively oriented (or simply oriented) if the coordinate
frame (∂/∂xi) is positively oriented, and negatively oriented if the coordinate frame
(∂/∂xi) is negatively oriented; see Definition 10.9.

(b) A smooth atlas {(Uα, φα)} for a smooth manifold M with or without boundary is
said to be consistently oriented if for each α, β, the transition map φβ ◦ φ−1

α has
positive Jacobian determinant everywhere on φα(Uα ∩ Uβ).

Proposition 10.18 (The orientation determined by a coordinate atlas). Let M be a
smooth manifold with or without boundary of dimension n ≥ 1. Given any consistently
oriented smooth atlas for M , there exists a unique orientation for M with the property
that each chart in the given atlas is positively oriented. Conversely, if M is oriented and
either ∂M = ∅ or n > 1, then the collection of all oriented smooth charts is a consistently
oriented atlas for M .
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Proof. Assume first that M has a consistently oriented smooth atlas. Each chart in the
atlas determines a pointwise orientation at each point of its domain. Wherever two of
the charts overlap, the transition matrix between their respective coordinate frames is
the Jacobian matrix of the transition map (see the bottom of p. 27 and (3.6)), which has
positive determinant by assumption, so they determine the same pointwise orientation at
each point. The pointwise orientation on M thus determined is continuous, because each
point of M is in the domain of an oriented coordinate frame.

Conversely, assume that M is oriented and either ∂M = ∅ or n > 1. Each point is
in the domain of a smooth chart with connected domain, and if the chart is negatively
oriented (see Exercise 10.11), then we can replace x1 with −x1 to obtain a new chart that
is positively oriented. The fact that all these charts are positively oriented guarantees that
their transition maps have positive Jacobian determinants, so they form a consistently
oriented atlas.2

Exercise 10.19: Let M be a connected, orientable, smooth manifold with or without
boundary. Show that M has exactly two orientations. Moreover, if two orientations of M
agree at one point, then they are equal.

10.2.2 Orientations of Hypersurfaces

If M is an oriented smooth manifold and if S is an immersed submanifold of M (with
or without boundary), then S might not inherit an orientation from M , even if S is
embedded. Clearly, it is not sufficient to restrict an orientation form from M to S, since
the restriction of an n-form to a manifold of lower dimension must necessarily be zero.
For example, the Möbius band (see Example 10.12(3)) is nonorientable, even though it
can be embedded in R3, which is orientable.

However, when S is an immersed or embedded hypersurface in M (i.e., a codimension
1-submanifold of M), it is sometimes possible to use an orientation on M to induce an
orientation on S; see Proposition 10.21 below for the details. We first need to introduce
the following definitions.

Definition 10.20. LetM be a smooth manifold with or without boundary and let S ⊆M
be an immersed submanifold with or without boundary. A vector field along S is a section
of the ambient tangent bundle TM |S, i.e., a continuous map N : S → TM with the
property that Np ∈ TpM for every p ∈ S. Such a vector field is said to be nowhere
tangent to S if Np ∈ TpM \ TpS for all p ∈ S; cf. Subsection 7.1.3.

Note that any vector field on M restricts to a vector field along S (not necessarily
tangent to S), but in general not every vector field along S is of this form, see Lemma 6.11.

Proposition 10.21. Let M be an oriented smooth n-manifold with or without boundary,
let S be an immersed hypersurface with or without boundary in M , and let N be a vector
field along S which is nowhere tangent to S. Then S has a unique orientation such that for
each p ∈ S, (E1, . . . , En−1) is an oriented basis for TpS if and only if (Np, E1, . . . , En−1)
is an oriented basis for TpM .

2This does not work for boundary charts when dimM = n = 1, because of our convention that the
last coordinate is nonnegative in a boundary chart.
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Proof. See [Lee13, Proposition 15.21].

Figure 10.1: The orientation induced by a nowhere tangent vector field

Note that not every hypersurface admits a nowhere tangent vector field, see for instance
[Lee13, Problem 15.6]. However, the following result gives a sufficient condition that holds
in many cases.

Corollary 10.22. If M is an oriented smooth manifold and if S ⊆ M is a regular level
set of a smooth function f : M → R, then S is orientable.

Proof. See [Lee13, Proposition 15.23].

10.2.3 Boundary Orientations

IfM is a smooth manifold with boundary ∂M ̸= ∅, then ∂M is an embedded hypersurface
without boundary in M (see the Theorem in Remark 9.7(4)) and there always exists a
smooth outward-pointing vector field along ∂M (see the Proposition in Remark 9.7(5)).
Since such a vector field is nowhere tangent to ∂M (see the Proposition in Remark 9.7(2)),
it determines an orientation on ∂M by Proposition 10.21, provided that M is oriented.
The following proposition shows that this orientation is independent of the choice of an
outward-pointing vector field along ∂M , and it is called the induced orientation or the
Stokes orientation on ∂M .

Proposition 10.23 (The induced orientation on a boundary). Let M be an oriented
smooth n-manifold with boundary, where n ≥ 1. Then ∂M is orientable, and all outward-
pointing vector fields along ∂M determine the same orientation on ∂M .

Proof. See [Lee13, Proposition 15.24].

Example 10.24. We determine the induced orientation on ∂Hn when Hn itself has the
standard orientation inherited from Rn. We can identify ∂Hn with Rn−1 under the corre-
spondence

(x1, . . . , xn−1, 0) ↔ (x1, . . . , xn−1).

Since the vector field −∂/∂xn is outward-pointing along Hn, the standard coordinate
frame for Rn−1 is positively oriented for ∂Hn if and only if [−∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1]
is the standard orientation for Rn; see Proposition 10.21. This orientation satisfies[

−∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1
]
= −

[
∂/∂xn, ∂/∂x1, . . . , ∂/∂xn−1

]
= (−1)n

[
∂/∂x1, . . . , ∂/∂xn−1, ∂/∂xn

]
.

Thus, the induced orientation on ∂Hn is equal to the standard orientation on Rn−1 when
n is even, but it is opposite to the standard orientation when n is odd. In particular, the
standard coordinates on ∂Hn ≈ Rn−1 are positively oriented if and only if n is even.
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10.2.4 Orientations and Smooth Maps

Definition 10.25. LetM and N be oriented smooth manifolds with or without boundary
and let F : M → N be a local diffeomorphism.

• If both M and N are positive-dimensional, then we say that F is orientation-
preserving if for each p ∈M , the isomorphism dFp : TpM → TF (p)N takes positively
oriented bases of TpM to positively oriented bases of TF (p)N , and orientation-
reversing if it takes positively oriented bases of TpM to negatively oriented bases
of TF (p)N .

• If bothM and N are zero-dimensional, then we say that F is orientation-preserving
if for every p ∈ M , the points p and F (p) have the same orientation, and it is
orientation-reversing if they have opposite orientation; see the paragraph after Def-
inition 10.13.

Remark 10.26. A composition of orientation-preserving maps is also orientation-preser-
ving.

Lemma 10.27. Let M and N be oriented positive-dimensional smooth manifolds with or
without boundary and let F : M → N be a local diffeomorphism. Show that the following
are equivalent:

(a) F is orientation-preserving.

(b) With respect to any positively oriented smooth charts for M and N , the Jacobian
matrix of F has positive determinant.

(c) If ω is any positively oriented orientation form for N , then F ∗ω is a positively
oriented orientation form for M .

Proof. Exercise!

Here is another important method for constructing orientations.

Proposition 10.28 (The pullback orientation). Let M and N be smooth manifolds with
or without boundary. If F : M → N is a local diffeomorphism and if N is oriented, then
M has a unique orientation, called the pullback orientation induced by F , such that F is
orientation-preserving.

Proof. For each p ∈M there is a unique orientation on TpM that makes the isomorphism
dFp : TpM → TF (p)N orientation-preserving. This defines a pointwise orientation on M ;
provided that it is continuous, it is the unique orientation on M with respect to which F
is orientation-preserving. To see that it is continuous, just choose a smooth orientation
form ω of N using Proposition 10.14 (so that ω is positively oriented) and note that F ∗ω
is a smooth orientation form forM , determining by construction and by Proposition 10.14
the above pointwise orientation on M , which is thus continuous, as desired.



CHAPTER 11

INTEGRATION ON MANIFOLDS

11.1 Line Integrals

Another important application of covector fields (cf. Subsection 8.1.4) is to make coordi-
nate-independent sense of the notion of line integrals, which generalize ordinary integrals
to the setting of curves in manifolds.

Definition 11.1. Let M be a smooth manifold with or without boundary. A curve
segment in M is a continuous curve γ : [a, b] → M whose domain is a compact interval.
It is a smooth curve segment in M if it is smooth when [a, b] is considered as a manifold
with boundary (or, equivalently, if γ has an extension to a smooth curve defined in a
neighborhood of each endpoint). It is a piecewise smooth curve segment in M if there
exists a finite partition a0 = a < a1 < · · · < ak−1 < ak = b of [a, b] such that γ|[ai−1,ai] is
smooth1 for every 1 ≤ i ≤ k.

Definition 11.2. Let M be a smooth manifold with or without boundary. Let ω be a
smooth covector field on M . If γ : [a, b] → M is a piecewise smooth curve segment, then
the line integral of ω over γ is defined to be the real number∫

γ

ω :=
k∑
i=1

∫
[ai−1,ai]

γ∗ω,

where [ai−1, ai], 1 ≤ i ≤ k, are subintervals of [a, b] on which γ is smooth. If t denotes
the standard coordinate on R, then the smooth covector field ωi := γ∗ω =

(
γ|[ai−1,ai]

)∗
ω

on [ai−1, ai] can be written as ωi = fi(t) dt for some smooth function fi : [ai−1, ai] → R,
so the integral of ωi over [ai−1, ai] is given by∫

[ai−1,ai]

ωi =

∫ ai

ai−1

fi(t) dt.

1Continuity of γ means that γ(t) approaches the same value as t approaches any of the points ai (other
than a0 or ak) from the left or the right. Smoothness of γ in each subinterval means that γ has one-sided
velocity vectors at each such ai when approaching from the left or the right, but these one-sided velocities
need not be equal.

107
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Therefore, ∫
γ

ω =
k∑
i=1

∫ ai

ai−1

fi(t) dt.

Proposition 11.3 (Properties of line integrals). Let M be a smooth manifold with or
without boundary. Let γ : [a, b] → M be a piecewise smooth curve segment in M , and let
ω, ω1, ω2 ∈ X∗(M). The following statements hold:

(a) For any c1, c2 ∈ R we have∫
γ

(
c1 ω1 + c2 ω2

)
= c1

∫
γ

ω1 + c2

∫
γ

ω2.

(b) If γ is a constant map, then ∫
γ

ω = 0.

(c) If γ1 := γ|[a,c] and γ2 := γ|[c,b], where a, b, c ∈ R with a < c < b, then∫
γ

ω =

∫
γ1

ω +

∫
γ2

ω.

(d) If F : M → N is any smooth map and if η ∈ X∗(N), then∫
γ

F ∗η =

∫
F◦γ

η.

Proof.

(a) Follows immediately from the corresponding property of usual integrals.

(b) Since γ is constant, for any p ∈ [a, b] we have dγp = 0, and thus

(γ∗ω)p (v) = ωγ(p)
(
dγp(v)

)
= 0 for any v ∈ Tp [a, b],

which implies that γ∗ω = 0. Therefore,∫
γ

ω =

∫
[a,b]

γ∗ω = 0.

(c) Follows immediately from the corresponding property of usual integrals.

(d) By Remark 8.16 we deduce that∫
γ

F ∗η =

∫
[a,b]

γ∗
(
F ∗η

)
=

∫
[a,b]

(F ◦ γ)∗η =

∫
F◦γ

η.
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Example 11.4. Consider the smooth covector field ω on M = R2\{0} given by

ω =
x dy − y dx

x2 + y2

and the smooth curve segment

γ : [0, 2π] →M, t 7→ (cos t, sin t).

The line integral of ω over γ equals∫
γ

ω =

∫
[0,2π]

γ∗ω =

∫ 2π

0

cos t(cos t dt)− sin t(− sin t dt)

sin2 t+ cos2 t
=

∫ 2π

0

dt = 2π.

Definition 11.5. Let M be a smooth manifold with or without boundary. If γ : [a, b] →
M and γ̃ : [c, d] → M are piecewise smooth curve segments in M , then we say that γ̃ is
a reparametrization of γ if γ̃ = γ ◦ φ for some diffeomorphism φ : [c, d] → [a, b]. If φ is
an increasing function (i.e., t1 < t2 =⇒ φ(t1) < φ(t2)), then we say that γ̃ is a forward
reparametrization of γ, while if φ is a decreasing function (i.e., t1 < t2 =⇒ φ(t1) > φ(t2)),
then we say that γ̃ is a backward reparametrization of γ. (More generally, with obvious
modifications one can allow φ to be piecewise smooth.)

Lemma 11.6 (Diffeomorphism invariance of the integral). Let ω be a smooth covector
field on the compact interval [a, b] ⊆ R and let φ : [c, d] → [a, b] be a diffeomorphism. We
have ∫

[c,d]

φ∗ω =


∫
[a,b]

ω if φ is increasing ,

−
∫
[a,b]

ω if φ is decreasing .

Proof. Denote by s, resp. t, the standard coordinate on [c, d], resp. [a, b]. Then ω can
be written as ωt = f(t) dt for some smooth function f : [a, b] → R, and now (8.4) and
(8.6) show that φ∗ω has the coordinate expression (φ∗ω)s = f

(
φ(s)

)
φ′(s) ds. Inserting

this into the definition of the line integral and using the change of variables formula for
ordinary integrals, we obtain

∫
[c,d]

φ∗ω =

∫ d

c

f
(
φ(s)

)
φ′(s) ds =



∫ b

a

f(t) dt if φ is increasing,

−
∫ b

a

f(t) dt if φ is decreasing,

which yields the statement.

Proposition 11.7 (Parameter independence of line integrals). Let M be a smooth man-
ifold with or without boundary, let ω ∈ X∗(M), and let γ be a piecewise smooth curve
segment in M . For any reparametrization γ̃ of γ we have

∫
γ̃

ω =


∫
γ

ω if γ̃ is a forward reparametrization ,

−
∫
γ

ω if γ̃ is a backward reparametrization .
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Proof. Exercise! (First deal with the case when γ is smooth using Lemma 11.6 and
Remark 8.16, and then treat the general case using Proposition 11.3(c).)

Proposition 11.8. Let M be a smooth manifold with or without boundary and let ω ∈
X∗(M). If γ : [a, b] →M is a piecewise smooth curve segment in M , then the line integral
of ω over γ can also be expressed as the ordinary integral∫

γ

ω =

∫ b

a

ωγ(t)
(
γ′(t)

)
dt.

Proof. See [Lee13, Proposition 11.38].

Theorem 11.9 (Fundamental theorem for line integrals). Let M be a smooth manifold
with or without boundary. Let f ∈ C∞(M) and let γ be a piecewise smooth curve segment
in M . Then ∫

γ

df = f
(
γ(b)

)
− f

(
γ(a)

)
.

Proof. Suppose first that γ is smooth. By combining Proposition 11.8, [Exercise Sheet
13, Exercise 3(a)] and the fundamental theorem of calculus we obtain∫

γ

df =

∫ b

a

dfγ(t)
(
γ′(t)

)
dt =

∫ b

a

(
f ◦ γ

)′
(t) =

(
f ◦ γ

)
(b)−

(
f ◦ γ

)
(a).

Suppose now that γ is merely piecewise smooth and consider a finite partition a0 =
a < a1 < · · · < ak−1 < ak = b of [a, b] such that γ|[ai−1,ai] is smooth for every 1 ≤ i ≤ k.
In view of Proposition 11.3(c), applying the above argument on each subinterval and
summing, we find that∫

γ

df =
k∑
i=1

(
f
(
γ(ai)

)
− f

(
γ(ai−1)

))
= f

(
γ(b)

)
− f

(
γ(a)

)
,

because the contributions from all the interior points cancel.

Example 11.10. Consider the smooth covector field

ω = 2xy3 dx+ 3x2y2 dy ∈ X∗(R2) = Ω1(R2).

Note that ω is exact, since ω = df for the function f : R2 → R, (x, y) 7→ x2y3. We now
compute the line integral of ω along the arc of the parabola y = x2 from (0, 0) to (1, 1).
Since the latter can be parametrized by the smooth curve segment γ : [0, 1] → R2, t 7→
(t, t2), by Theorem 11.9 we obtain∫

γ

ω =

∫
γ

df =�����:1
f
(
γ(1)

)
− �����:0

f
(
γ(0)

)
= 1.

This can also be verified by a direct computation as follows: We have

γ∗ω = 2t(t2)3 dt+ 3t2(t2)2 d(t2) = 2t7 dt+ 6t7 dt = 8t7 dt,

and hence ∫
γ

ω
dfn
==

∫
[0,1]

γ∗ω =

∫ 1

0

8t7 dt =
[
t8
]1
0
= 1.
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11.2 Integration of Differential Forms

We first define the integral of a differential form over a domain in Euclidean space, and
then we show how to use diffeomorphism invariance and smooth partitions of unity to
extend this definition to n-forms on oriented n-manifolds. The key feature of this definition
is that it is invariant under orientation-preserving diffeomorphisms. After developing the
general theory of integration of differential forms on oriented manifolds, we state (without
complete proof) one of the most important theorems in differential geometry: Stokes’
theorem. It is a far-reaching generalization of the fundamental theorem of calculus and
of the fundamental theorem for line integrals (Theorem 11.9), as well as of the classical
theorems of vector calculus, such as Green’s theorem (Theorem 11.23).

11.2.1 Integration in Rn

Definition 11.11. Let D ⊆ Rn be a domain of integration (i.e., a bounded subset of Rn

whose boundary has n-dimensional measure zero, such as a rectangle according to [Lee13,
Proposition C.18]), and let ω be a continuous n-form on D. Since ω can be written as
ω = f dx1 ∧ . . .∧ dxn for some continuous function f : D → R, we define the integral of ω
over D to be the usual integral∫

D

ω =

∫
D

f dx1 ∧ . . . ∧ dxn :=

∫
D

f dx1 . . . dxn =

∫
D

f dV .

(In simple terms, to compute the integral of a form such as f dx1 ∧ . . . ∧ dxn, just
“erase the wedges”.)

Definition 11.12. Let U be an open subset of Rn or Hn and let ω be a compactly
supported n-form on U . We define ∫

U

ω :=

∫
D

ω ,

where D ⊆ Rn or Hn is any domain of integration containing suppω, and ω is extended to
be zero on the complement of its support. Note that Definition 11.12 does not depend on
the choice of domain of integration, and the right-hand side reduces to Definition 11.11.

Proposition 11.13. Let D and E be open domains of integration in Rn or Hn, and let
G : D → E be a smooth map that restricts to an orientation-preserving or orientation-
reversing diffeomorphism D → E. If ω is an n-form on E, then

∫
D

G∗ω =


∫
E

ω , if G is orientation-preserving,

−
∫
E

ω , if G is orientation-reversing.

Proof. Follows from the (usual) change of variables formula ([Lee13, Theorem C.26])
and the pullback formula for n-forms (Proposition 8.21), taking also Lemma 10.27 into
account.



112 Chapter 11. Integration on Manifolds

As we cannot guarantee that arbitrary open or compact subsets are domains of inte-
gration, we need the following lemma in order to extend Proposition 11.13 to compactly
supported n-forms defined on open subsets.

Lemma 11.14. If U is an open subset of Rn or Hn and if K is a compact subset of U ,
then there is an open domain of integration D such that

K ⊆ D ⊆ D ⊆ U.

Proof. See [Lee13, Lemma 16.2].

Proposition 11.15. Let U and V be open subsets of Rn or Hn, and let G : U → V be
an orientation-preserving or orientation-reversing diffeomorphism. If ω is a compactly
supported n-form on V , then

∫
U

G∗ω =


∫
V

ω , if G is orientation-preserving,

−
∫
V

ω , if G is orientation-reversing.

Proof. By Lemma 11.14 there is an open domain of integration E such that

suppω ⊆ E ⊆ E ⊆ V.

(See Figure 11.1.) Since diffeomorphisms take interiors to interiors, boundaries to bound-
aries, and sets of measure zero to sets of measure zero, we infer that D := G−1(E) ⊆
U is an open domain of integration containing supp(G∗ω). We conclude by Proposi-
tion 11.13.

Figure 11.1: Diffeomorphism invariance of the integral of a form on an open subset

Using the above proposition we can now make sense of the integral of a differential
n-form over an oriented n-manifold.

11.2.2 Integration on Manifolds

Definition 11.16. Let M be an oriented smooth n-manifold with or without boundary
and let ω be an n-form on M , where n ≥ 1. Suppose that ω is compactly supported in
the domain of a single smooth chart (U,φ) for M that is either positively or negatively
oriented. We define the integral of ω over M to be∫

M

ω = ±
∫
φ(U)

(φ−1)
∗
ω (11.1)

with the positive sign for a positively oriented chart, and the negative sign otherwise.
(See Figure 11.2.) Since (φ−1)

∗
ω is a compactly supported n-form on the open subset

φ(U) ⊆ Rn or Hn, its integral is defined as in Definition 11.12.
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Figure 11.2: The integral of a form over a manifold

Proposition 11.17. If M and ω are as above, then
∫
M
ω does not depend on the choice

of smooth chart whose domain contains suppω.

Proof. Let (U,φ) and (Ũ , φ̃) be two smooth charts such that suppω ⊆ U ∩ Ũ . If both

charts are similarly oriented, then φ̃ ◦ φ−1 : φ(U ∩ Ũ) → φ̃(U ∩ Ũ) is an orientation-
preserving diffeomorphism (see the proof of Proposition 10.18 and Lemma 10.27), so∫

φ̃(Ũ)

(φ̃−1)
∗
ω =

∫
φ̃(Ũ∩U)

(φ̃−1)
∗
ω

Proposition 11.15
==========

∫
φ(U∩Ũ)

(φ̃ ◦ φ−1)
∗
(φ̃−1)

∗
ω

=

∫
φ(U∩Ũ)

(φ−1)
∗
φ̃∗(φ̃−1)

∗︸ ︷︷ ︸
=Id∗

ω =

∫
φ(U)

(φ−1)
∗
ω .

If the charts are oppositely oriented, then the two definitions given by (11.1) have opposite
signs, but is compensated by the fact that φ̃ ◦ φ−1 is orientation-reversing, so Proposi-
tion 11.15 introduces an extra negative sign into the above computation. In either case,
the two definitions of

∫
M
ω agree.

To integrate over an entire manifold, we combine this definition with a partition of
unity.

Definition 11.18. Let M be an oriented smooth n-manifold with or without boundary
and let ω be a compactly supported n-form onM , where n ≥ 1. Let {Ui} be a finite open
cover of suppω by domains of positively or negatively oriented smooth charts2, and let
{ψi} be a smooth partition of unity subordinate to this cover. We define the integral of
ω over M to be ∫

M

ω =
∑
i

∫
M

ψi ω . (11.2)

Since for each i the n-form ψi ω is compactly supported in Ui, each of the terms in this
(finite) sum is well defined according to our previous discussion.

The following proposition shows that the integral is well defined.

Proposition 11.19. The definition (11.2) does not depend on the choice of open cover
or partition of unity.

Proof. Let {Ũj} be another open cover of suppω by domains of positively or negatively

oriented smooth charts, and let {ψ̃j} be a subordinate smooth partition of unity. Since∫
M

ψi ω =

∫
M

(∑
j

ψ̃j

)
ψi ω =

∑
j

∫
M

ψ̃j ψi ω for every i,

we obtain ∑
i

∫
M

ψi ω =
∑
i,j

∫
M

ψ̃j ψi ω.

2The reason we allow for negatively oriented charts is that it may not be possible to find positively
oriented boundary charts on a 1-manifold with boundary, as noted in the proof of Proposition 10.18.
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Each term in this last sum is the integral of a form that is compactly supported in the
domain of a single smooth chart (e.g. in Ui), so by Proposition 11.17 each term is well
defined, regardless of which coordinate map we use to compute it. The same argument,
starting with

∫
M
ψ̃j ω instead, shows that∑

j

∫
M

ψ̃j ω =
∑
i,j

∫
M

ψ̃j ψi ω.

Thus, both definitions yield the same value for
∫
M
ω.

We have a special definition in the zero-dimensional case. The integral of a compactly
supported 0-form (i.e., a real-valued function) f over an oriented 0-manifold M is defined
to be the sum ∫

M

f :=
∑
p∈M

±f(p), (11.3)

where we take the positive sign at points where the orientation is positive and the negative
sign otherwise. The assumption that f is compactly supported implies that there are only
finitely many non-zero terms in this sum.

If S ⊆M is an oriented immersed k-dimensional manifold (with or without boundary)
and if ω is a k-form onM whose restriction to S is compactly supported, then we interpret∫
S
ω as

∫
S
ι∗ω, where ι : S ↪→ M is the inclusion map. In particular, if M is a compact,

oriented, smooth n-manifold with boundary and if ω is an (n − 1)-form on M , then we
can interpret

∫
∂M

ω unambiguously as the integral of ι∗ω over ∂M , where ∂M is always
understood to have the induced (Stokes) orientation; see Proposition 10.23.

Proposition 11.20 (Properties of integrals). Let M and N be nonempty oriented smooth
n-manifolds with or without boundary, and let ω and η be compactly supported n-forms
on M .

(a) Linearity: If a, b ∈ R, then∫
M

aω + b η = a

∫
M

ω + b

∫
M

η .

(b) Orientation reversal: If −M denotes M with opposite orientation, then∫
−M

ω = −
∫
M

ω .

(c) Positivity: If ω is a positively oriented orientation form, then∫
M

ω > 0 .

(d) Diffeomorphism invariance: If F : N → M is an orientation-preserving or an
orientation-reversing diffeomorphism, then

∫
N

F ∗ω =


∫
M

ω, if F is orientation-preserving,

−
∫
M

ω, if F is orientation-reversing.
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Proof.

(a) Exercise.

(b) Exercise (follows from the usual change of variables formula).

(c) Since ω is a positively oriented orientation form onM , if (U,φ) is a positively oriented
smooth chart, then (φ−1)

∗
ω is a positive function times dx1 ∧ . . .∧ dxn (while if (U,φ) is

negatively oriented, then it is a negative function times the same form); see the proof of
Proposition 10.14. Therefore, each term in (11.2) defining

∫
M
ω is nonnegative, with at

least one strictly positive term, proving thus (c).

(d) It suffices to treat the case when ω is compactly supported in a single positively
or negatively oriented smooth chart. If (U,φ) is a positively oriented such chart and
if F is orientation-preserving, then it is easy to check that

(
F−1(U), φ ◦ F

)
is an ori-

ented smooth chart on N whose domain contains supp(F ∗ω), so the result follows from
Proposition 11.15. The remaining cases follow from this result and (b).

11.2.3 Stokes’ theorem

We now state the cental result in theory of integration on manifolds, Stokes’ theorem.
However, we do not provide its complete proof; instead, we refer to [Lee13, Theorem
16.11] for the details.

Theorem 11.21 (Stokes’ theorem). Let M be an oriented smooth n-manifold with bound-
ary and let ω be a compactly supported smooth (n− 1)-form on M . Then∫

M

dω =

∫
∂M

ω .

Here, ∂M is understood to have the induced (Stokes) orientation, and the ω on the
right-hand side is to be interpreted as ι∗∂Mω. If ∂M = ∅, then the right-hand side is to be
interpreted as 0. When M is 1-dimensional, the right-hand integral is just a finite sum,
see (11.3).

Proof of the case M = R2. We have to show that∫
R2

dω = 0, where ω = f dx+ g dy ∈ Ω1
c(R2).

Since f and g have compact support, we may pick r > 0 such that both supp(f) and
supp(g) are contained in the interior of the square [−r, r]× [−r, r]. Then∫

R2

dω =

∫
R2

(
∂f

∂y
dy ∧ dx+

∂g

∂x
dx ∧ dy

)
Fubini
====

= −
∫ r

−r

∫ r

−r

∂f

∂y
(x, y) dx dy +

∫ r

−r

∫ r

−r

∂g

∂x
(x, y) dx dy

= −
∫ r

−r

[
f(x, y)

]y=r
y=−r︸ ︷︷ ︸

=0

dx+

∫ r

−r

[
g(x, y)

]x=r
x=−r︸ ︷︷ ︸

=0

dy

= 0
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11.2.4 Applications of Stokes’ theorem

Example 11.22. Let M be a smooth manifold. Let γ : [a, b] ↪→ M be a smooth embed-
ding, so that S := γ

(
[a, b]

)
is an embedded 1-submanifold with 0-dimensional boundary

∂S =
{
γ(a), γ(b)

}
in M (and γ is a diffeomorphism onto its image S). If we give S the

orientation (via the differential dγp, p ∈ [a, b]) such that γ is orientation-preserving, then
for any f ∈ C∞(M) we obtain∫

γ

df
Definition 11.2
=========

∫
[a,b]

γ∗
(
df
) Definition 11.18
==========

γ−1: chart

∫
S

df

Theorem 11.21
=========

∫
∂S

f
(11.3)
=== f

(
γ(b)

)
− f

(
γ(a)

)
,

because the boundary orientation at γ(a) is −1, while at γ(b) is +1. Thus, Stokes’
theorem reduces to the fundamental theorem for line integrals (Theorem 11.9) in this
case. In particular, when γ : [a, b] ↪→ R is the inclusion map, then Stokes’ theorem is just
the fundamental theorem of calculus.

Theorem 11.23 (Green’s theorem). Let D ⊆ R2 be a compact regular domain (i.e.,
properly embedded codimension-0 submanifold with boundary), and let P , Q be smooth
real-valued functions on D. Then∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂D

P dx+Q dy.

Proof. Apply Stokes’ theorem to the 1-form P dx+Q dy.

In particular, with P (x, y) = −y and Q(x, y) = x, we compute the area of D:

A(D) =
1

2

∫
∂D

(x dy − y dx) .

Corollary 11.24 (Integrals of exact forms). If M is a compact, oriented, smooth n-
manifold without boundary, then the integral of any exact n-form over M is zero:∫

M

dω = 0 if ∂M = ∅.

Corollary 11.25 (Integrals of closed forms over boundaries). IfM is a compact, oriented,
smooth n-manifold with boundary, then the integral over ∂M of any closed (n − 1)-form
on M is zero: ∫

∂M

ω = 0 if dω = 0 on M.

Corollary 11.26. Let M be a smooth n-manifold with or without boundary, let S ⊆ M
be an oriented, compact, smooth k-dimensional submanifold (without boundary), and let
ω be a closed k-form on M . If

∫
S
ω ̸= 0, then both of the following are true:

(a) ω is not exact on M .

(b) S is not the boundary of an oriented, compact, smooth submanifold with boundary
in M .
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Proof.

(a) If ω were exact on M , then ω = dη for some (k − 1)-form η on M , so we have

0 ̸=
∫
S

ω
dfn
==

∫
S

ι∗S ω =

∫
S

ι∗S (dη)
Proposition 8.26
==========

∫
S

d(ι∗S η)
Corollary 11.24
========= 0,

which is a contradiction.

(b) Argue again by contradiction and invoke Corollary 11.25.

Example 11.27. Consider the smooth covector field

ω =
x dy − y dx

x2 + y2
on M = R2\{0}.

Now, we will show that ω is closed, but not exact. Indeed:

• Setting

f(x, y) =
x

x2 + y2
and g(x, y) = − y

x2 + y2
,

so that ω = f dy + g dx, we compute that

dω = df ∧ dy + dg ∧ dx =
∂f

∂x
dx ∧ dy +

∂g

∂y
dy ∧ dx

=
y2 − x2

(x2 + y2)2
dx ∧ dy +

y2 − x2

(x2 + y2)2
dy ∧ dx

= 0,

which shows that ω is closed.

• If ω were exact, then there would exist a smooth function f : M → R such that ω = df ,
so by Stokes’ theorem and the fact that ∂γ = ∅ we would then obtain∫

γ

ω =

∫
γ

df =

∫
∂γ

f = 0 ,

which contradicts Example 11.4. Therefore, ω is not exact.

Finally, if (r, θ) are polar coordinates on the right half-plane H =
{
(x, y) | x > 0

}
⊆ M ,

then we may compute the polar coordinate expression for ω ∈ X∗(M) as follows: Since
x = r cos θ and y = r sin θ, we have

ω =
r cos θ

r2
d(r sin θ)− r sin θ

r2
d(r cos θ)

=
cos θ

r
(sin θ dr + r cos θ dθ)− sin θ

r
(cos θ dr − sin θ dθ)

= dθ.





APPENDIX A

THE REAL PROJECTIVE SPACE

Most of the smooth manifolds that we encountered in this course were intrinsically sub-
spaces of some Euclidean space Rn. However, the set-up of the general theory (that is,
endowing topological manifolds with a smooth structure) is designed precisely so as to
allow our objects of study to come along as abstract spaces, rather than requiring them
to be subsets of some Rn. Hence, it would be nice to see an example of a smooth manifold
which takes advantage of this abstract set-up. An elementary, yet important, example is
the real projective space RPn, which will be described in this appendix.

The underlying set of RPn:

Let n ∈ N∗. There is a natural group action of R× := R \ {0} on Rn+1 \ {0} given by

R× × (Rn+1 \ {0}) → Rn+1 \ {0}
(λ, x) 7→ λx.

As with any group action, we can form the quotient set, whose points are the orbits of the
action. Concretely, we define the real projective space of dimension n, denoted by RPn,
to be the quotient of the above action, i.e.,

RPn :=
(
Rn+1 \ {0}

)
/R×.

Note that RPn comes equipped with a natural surjection

π : Rn+1 \ {0} → RPn

x 7→ [x] := R× · x.

In particular, notice that points of RPn are in one-to-one correspondence with one-
dimensional subspaces of Rn+1: if [x] ∈ RPn, then [x]∪{0} = R ·x is the one-dimensional
subspace of Rn+1 generated by x, while if L is any one-dimensional subspace of Rn+1,
then L \ {0} = [x] for any x ∈ L \ {0}. (This is the geometric picture you should have in
mind when thinking about RPn.) If

x = (x0, . . . , xn)

119
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is a point of Rn+1 \ {0}, then we denote by

π(x) = [x] = [x0 : . . . : xn]

the corresponding point of RPn. Note that [x0 : . . . : xn] = [y0 : . . . : yn] if and only if
there exists λ ̸= 0 such that λxi = yi for all i.

The topology of RPn:

By definition, RPn is a quotient of Rn+1 \ {0}, and the latter can be equipped with its
natural Euclidean topology. Recall that, in general, there is a procedure with which the
quotient of some topological space can be equipped with a natural topology. Concretely,
one can easily show that the collection

TRPn :=
{
U ⊆ RPn | π−1(U) ⊆ Rn+1 \ {0} is open

}
is a topology on RPn. Moreover, if we endow RPn with this topology, then the quotient
map π : Rn+1 \ {0} → RPn is continuous, and a map f : RPn → X from RPn to some
topological space X is continuous if and only if so is the composite map f ◦ π. The same
is true for any subset A ⊆ RPn endowed with the subspace topology.

At this point, there are several things that need to be checked about the topological
space RPn.

Exercise A.1: Show that RPn is Hausdorff by going through the following steps:

(i) Show that the quotient map π : Rn+1 \ {0} → RPn is open.

(ii) Show that the set

∆̃ :=
{
(x, y) ∈

(
Rn+1 \ {0}

)
×
(
Rn+1 \ {0}

)
| [x] = [y]

}
is closed in

(
Rn+1 \ {0}

)
×
(
Rn+1 \ {0}

)
.

(iii) Show that the set

∆ :=
{(

[x], [x]
)
∈ RPn × RPn | [x] ∈ RPn

}
is closed in RPn × RPn.

(iv) Conclude that RPn is Hausdorff.

[Hint: Use (iii) and that the collection{
U × V | U, V ∈ TRPn

}
is a basis for the topology of RPn × RPn by definition of the product topology.]
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Solution:

(i) Note that we have

π−1
(
π(U)

)
=
⋃
λ∈R×

λ · U.

As multiplication by a scalar λ ∈ R× is a homeomorphism, the sets λ · U are open,
and thus π−1(π(U)) is open as well. By definition of the quotient topology, we
conclude that π(U) is open.

(ii) Notice that [x] = [y] if and only if the 2 × (n + 1) matrix with lines x and y has
submaximal rank. By the solution to part (c) of [Exercise Sheet 2, Exercise 4], the

set ∆̃ of such matrices is closed.

(iii) As π is open, the map

π × π : (Rn+1 \ {0})× (Rn+1 \ {0}) → RPn × RPn

is open as well (it suffices to check that it maps basis elements U × V to open
subsets). It is straightforward to see that

π × π(∆̃c) = ∆c

where •c denotes the complement. Hence, ∆c is open, and thus ∆ is closed.

(iv) Let [x] ̸= [y] be two distinct points of RPn. Then ([x], [y]) ∈ ∆c, and as ∆c is open,
there exist open subset U, V of RPn such that

([x], [y]) ∈ U × V ⊆ ∆c.

Now notice that U ∩ V = ∅, because otherwise U × V would contain a point of the
diagonal. Hence [x] and [y] can be separated by open subsets, i.e. RPn is Hausdorff.

Exercise A.2: Show that RPn is second-countable.

[Hint: Use Exercise 1(i).]

Solution: Let B be a countable basis for Rn+1 \ {0}. Set

B′ :=
{
π(B) | B ∈ B

}
and notice that as π is open, this is a collection of open subsets of RPn. Let us show that
B′ is a basis for the topology of RPn. To this end, let U ⊆ RPn be open and [x] ∈ U a
point. Then x ∈ π−1(U), and thus there exists B ∈ B such that x ∈ B ⊆ π−1(U). But
then [x] ∈ π(B) ⊆ U . Hence, B′ is a countable basis for RPn.

Exercise A.3: Show that RPn is locally Euclidean of dimension n as follows.

(i) For each 0 ≤ i ≤ n, set

Ui :=
{
[x0 : . . . : xn] | xi ̸= 0

}
⊆ RPn.

Show that Ui is open, and that

RPn =
n⋃
i=0

Ui.
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(ii) For each 0 ≤ i ≤ n, consider the map

φi : Ui → Rn

[x0 : . . . : xn] 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
.

Show first that φi is well-defined, and subsequently that it is a homeomorphism.
Conclude that RPn is locally Euclidean of dimension n.

Solution:

(i) Notice that

π−1(Ui) = {(x0, . . . , xn) | xi ̸= 0} ⊆ Rn+1

is open, and thus Ui is open by definition of the quotient topology.

Now, note that for any [x] ∈ RPn we have x ∈ Rn+1 \ {0}, and thus there exists an
index i ∈ {0, . . . , n} such that xi ̸= 0. Hence [x] ∈ Ui, and as [x] was arbitrary, we
infer that

RPn =
n⋃
i=0

Ui.

(ii) The ratio xj/xi is invariant under scaling x, and thus φi is well-defined. To check
that it is continuous, it suffices to check that φi ◦ π is a continuous map from
π−1(Ui) = Rn+1

xi ̸=0 to Rn, but this is straightforward by the defining formula. Finally,
to show that φi is a homeomorphism, we construct a continuous inverse. Consider
the map

Ψi : Rn → π−1(Ui)

(y1, . . . , yn) 7→ (y1, . . . , yi, 1, yi+1, . . . , yn),

which is clearly continuous, and set ψi = π ◦ Ψi. This is continuous, since it is a
composition of continuous maps, and it is straightforward to see that φi and ψi are
mutually inverse. Hence, φi is a homeomorphism with inverse φ−1

i = ψi.

Exercise A.4:

(i) Show that RPn is connected.

(ii) Show that the restriction of π to Sn ⊆ Rn+1 \ {0} is still surjective. Conclude that
RPn is compact.

By the above exercises we infer that RPn is an n-dimensional topological manifold ,
which is additionally compact and connected.

Before continuing the study of RPn, a few words about the open subsets Ui defined
in Exercise 3(i) are in order. The open cover RPn =

⋃n
i=0 Ui is called the standard open

cover of RPn. The equality, for example, φn([x]) = y, means that the line corresponding
to [x] meets the plane Rn×{1} at the point (y, 1). The complement of Un consists of those
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lines which do not intersect the plane Rn×{1}, which (as you may convince yourself) are
precisely the lines contained in Rn × {0}. Hence, we may somewhat suggestively write

RPn = Un ⊔ P
(
Rn × {0}

) ∼= Rn ⊔ RPn−1.

We may thus regard RPn as a compactification of Rn by adding the points of RPn−1,
which from this point of view are often called points at infinity. In particular, the real
projective line RP1 (n = 1) may be regarded a one-point compactification of the real
line R1, obtained by adding to it a “point at infinity”, and the real projective plane RP2

(n = 2) may be viewed as a compactification of the real plane R2 by adding to it a “line
at infinity”.

The smooth structure of RPn:

The standard open cover

RPn =
n⋃
i=0

Ui,

together with the homeomorphisms

φi : Ui → Rn, [x0 : . . . : xn] 7→
(
x0
xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn
xi

)
, 0 ≤ i ≤ n,

determine an atlas of RPn. According to Proposition 1.8(a), to obtain a smooth structure
on RPn, it only remains to check that the charts

{
(Ui, φi)

}
0≤i≤n are smoothly compatible.

Exercise A.5: Let 0 ≤ i < j ≤ n. Show that the transition map from (Ui, φi) to (Uj, φj)
is a diffeomorphism by computing that

φj ◦ φ−1
i : Rn

xj ̸=0 → Rn
xi+1 ̸=0

(x1, . . . , xn) 7→
1

xj
(x1, . . . , xi, 1, xi+1, . . . , xj−1, xj+1, . . . , xn) ,

and

φi ◦ φ−1
j : Rn

xi+1 ̸=0 → Rn
xj ̸=0

(x1, . . . , xn) 7→
1

xi+1

(x1, . . . , xi, xi+2, . . . , xj, 1, xj+1, . . . , xn) .

Solution: It is a straightforward albeit a tedious calculation to verify the formulas. Once
verified, it is immediate that the transition functions are smooth.

It follows from Exercise 5 that

ARPn :=
{
(Ui, φi)

}n
i=0

is a smooth atlas for RPn, and the induced by Proposition 1.8(a) smooth structure on
RPn is referred to as the standard one. Thus, we now have a smooth manifold, namely
RPn, which is not intrinsically defined as a subset of Rn!
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Comment: A posteriori, Whitney’s embedding theorem (see Appendix B) asserts that
there is a smooth embedding RPn ↪→ R2n (and the exponent 2n is in fact minimal if n
is a power of 2), so we can realize the smooth manifold RPn as a submanifold of R2n.
However, it would be very awkward if we were only able to speak about RPn as a smooth
manifold once we find such an embedding, so the flexibility of defining it abstractly is
certainly very helpful.

Further exercises about RPn:

Exercise A.6: Prove the following assertions:

(i) The quotient map π : Rn+1 \ {0} → RPn is smooth.

(ii) A map F : RPn →M to a smooth manifoldM is smooth if and only if the composite
map F ◦ π : Rn+1 \ {0} →M is smooth.

Solution: See [Exercise Sheet 3, Exercise 5].

Exercise A.7: Show that the map

F : Rn → RPn, (x1, . . . , xn) 7→ [x1 : · · · : xn : 1]

is a diffeomorphism onto a dense open subset of RPn.

Solution: See [Exercise Sheet 3, Exercise 6].

Exercise A.8: Let P : Rn+1 \ {0} → Rk+1 \ {0} be a smooth map, and suppose that for
some d ∈ Z we have P (λx) = λdP (x) for all λ ∈ R× and x ∈ Rn+1 \ {0}. Show that the

map P̃ : RPn → RPk given by P̃
(
[x]
)
= [P (x)] is well-defined and smooth.

Exercise A.9: Show that RP1 ∼= S1 as smooth manifolds.

[Hint: To define an appropriate map, it might be helpful to use the identifications R2 ∼= C
and S1 ∼= {z ∈ C | |z| = 1}.]

Exercise A.10: Show that the quotient map π : Rn+1 \ {0} → RPn is a smooth submer-
sion, and that the kernel of the differential dπp : Tp

(
Rn+1 \{0}

)
→ T[p]RPn is the subspace

generated by p.

Solution: See [Exercise Sheet 7, Exercise 1(b)].

Exercise A.11: Consider the smooth map

F : R2 → RP2, (x, y) 7→ [x : y : 1]

and the smooth vector field X on R2 defined by

X = −y ∂

∂x
+ x

∂

∂y
.

Show that there is a smooth vector field Y on RP2 that is F -related to X, and compute
its coordinate representation in terms of each of the charts defined in Exercise 3(ii).



APPENDIX B

SARD’S THEOREM AND WHITNEY’S THEOREMS

Theorem B.1 (Sard’s theorem). If F : M → N is a smooth map between smooth mani-
folds, then the set of the critical values of F has measure zero in N .

⇝ “almost all” c ∈ N are regular values of F ⇒

⇒ “almost all” level sets F−1(c) of F are properly embedded submanifolds of M of
dimension dimM − dimN .

Theorem B.2 (Whitney’s embedding theorem). Every smooth n-manifold admits a
proper smooth embedding into R2n+1.

⇝ Every smooth n-manifold is diffeomorphic to a properly embedded submanifold of
R2n+1.
(Use Whitney’s embedding theorem, Proposition 5.3, Claim 3 from the proof of
Proposition 4.6 and [Exercise Sheet 8, Exercise 1(b)].)

Theorem B.3 (Whitney’s immersion theorem). Every smooth n-manifold admits a smooth
immersion into R2n.

The above two theorems are sometimes referred to as the easy or weak Whitney
embedding and immersion theorems, because Whitney obtained later the following im-
provements.

Theorem B.4 (Strong Whitney’s embedding theorem). Given n ≥ 1, every smooth n-
manifold admits a proper smooth embedding into R2n.

Theorem B.5 (Strong Whitney’s immersion theorem). Given n ≥ 2, every smooth n-
manifold admits a smooth immersion into R2n−1.

For the proofs of all the above results, as well as a discussion of sets of measure zero
(in Rn or in smooth manifolds) we refer to [Lee13, Chapter 6 and Appendix C].
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APPENDIX C

MULTILINEAR ALGEBRA

1 The Dual of a Vector Space

Definition C.1. Let V be a finite-dimensional real vector space.

(a) A covector on V is a real-valued linear functional on V , i.e., a linear map ω : V → R.

(b) The set of all covectors on V is a real vector space under the obvious operations
of pointwise addition and scalar multiplication. It is denoted by V ∗ and called the
dual space of V .

The next proposition expresses the most important fact about V ∗ (in the finite-
dimensional case).

Proposition C.2. Let V be a real vector space of dimension n. Given any basis (E1, . . . , En)
for V , consider the covectors ε1, . . . , εn ∈ V ∗ defined by

εi(Ej) = δij.

Then (ε1, . . . , εn) is a basis for V ∗, called the dual basis to (Ej). In particular,

dimR V = dimR V
∗.

Proof. Exercise!

In general, if (Ej) is a basis for V and if (εi) is its dual basis, then for any vector
v = vjEj ∈ V we have

εi(v) = vjεi(Ej) = vjδij = vi.

Thus, the i-th basis covector εi picks out the i-th component of a vector with respect to
the basis (Ej).

More generally, we can express an arbitrary covector ω ∈ V ∗ in terms of the dual basis
as

ω = ωi ε
i,

where the i-th component is determined by ωi = ω(Ei). Thus, the action of the given
covector ω ∈ V ∗ on a vector v = vjEj ∈ V is

ω(v) = ωi v
j εi(Ej) = ωi v

i.

127
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Definition C.3. Let V and W be real vector spaces and let A : V → W be a linear map.
The dual map of A is the linear map A∗ : W ∗ → V ∗ defined by

(A∗ω)(v) := ω(Av), ω ∈ W ∗, v ∈ V.

It is straightforward to check that the dual map satisfies the following properties:

(a) (A ◦B)∗ = B∗ ◦ A∗.

(b) (IdV )
∗ = IdV ∗ .

Proposition C.4. The assignment that sends a vector space to its dual space and a linear
map to its dual linear map is a contravariant functor from the category of real vector spaces
to itself.

Another important fact about the dual of a finite-dimensional vector space is the
following.

Proposition C.5. Let V be a finite-dimensional real vector space. For any given v ∈ V ,
define a linear functional ξ(v) by

ξ(v) : V ∗ → R
ω 7→ ξ(v)(ω) := ω(v).

Then ξ(v) ∈ (V ∗)∗; that is, ξ(v) is a linear functional on V ∗. Moreover, the map

ξ : V → (V ∗)∗

v 7→ ξ(v)

is an R-linear isomorphism, which is canonical (it is defined without reference to any
basis).

Proof. The proof that both ξ(v) and ξ are R-linear maps are left as exercises. Since by
Proposition C.2 we have

dimV = dimV ∗ = dim(V ∗)∗ ,

it suffices to prove that ξ is injective. To this end, let v ∈ V be non-zero, complete it to
a basis {v = E1, E2, . . . , En} of V , and let (εi) be its dual basis. Then

ξ(v)(ε1) = ε1(v) = ε1(E1) = 1,

so ξ(v) ̸= 0. Therefore, ker ξ = 0; in other words, ξ is injective, as desired.

Due to Proposition C.5, the real number ω(v) obtained by applying a covector ω to a
vector v is sometimes denoted by either of the more symmetric-looking notations ⟨ω, v⟩
or ⟨v, ω⟩; both expressions can be thought of either as the action of the covector ω ∈ V ∗

on the vector v ∈ V , or as the action of the linear functional ξ(v) ∈ V ∗∗ on the element
ω ∈ V ∗. There should be no cause for confusion with the use of the same angle bracket
notation for inner products: whenever one of the arguments is a vector and the other a
covector, the notation ⟨ω, v⟩ is always to be interpreted as the natural pairing between
vectors and covectors, not as an inner product.

There is also a symmetry between bases and dual bases for a finite-dimensional vector
space V : any basis for V determines a dual basis for V ∗, and conversely, any basis for V ∗

determines a dual basis for V ∗∗ ∼= V . If (εi) is the basis for V ∗ dual to a basis (Ej) for V ,
then (Ej) is the basis dual to (εi), because both statements are equivalent to the relation
⟨εi, Ej⟩ = δij.



Section 2. Multilinear Maps and Tensors 129

2 Multilinear Maps and Tensors

In the preceding section, we defined and briefly examined the dual of a vector space
(in the finite-dimensional case), which is the space of real-valued linear functions on the
given vector space. A natural, and from the point of view of (differential) geometry very
important, generalization is to consider functions with several arguments, which are linear
in each individual argument. These are called multilinear functions.

Definition C.6. Let V1, . . . , Vk andW be real vector spaces. A map F : V1×· · ·×Vk → W
is called multilinear if it is linear as a function of each variable separately when the others
are held fixed; that is, if 1 ≤ i ≤ k is arbitrary, and if we are given elements vi, v

′
i ∈ Vi

and real numbers a, a′ ∈ R, then

F (v1, . . . , avi + a′v′i, . . . , vk) = aF (v1, . . . , vi, . . . , vk) + a′F (v1, . . . , v
′
i, . . . , vk).

Denote by L(V1, . . . , Vk;W ) the set of multilinear maps from V1 × · · · × Vk to W , and
note that L(V1, . . . , Vk;W ) has the structure of a real vector space. In the special case
when V1 = . . . = Vk = V andW = R, we often call an element of the space L(V, . . . , V ;R)
a k-multilinear function on V ; see Definition C.11.

Now, if the target space is W = R, then there is a simple operation with which one
can succesively build multilinear maps.

Definition C.7. Let V1, . . . , Vk and W1, . . . ,Wl be real vector spaces, and consider F ∈
L(V1, . . . , Vk;R) and G ∈ L(W1, . . . ,Wl;R). The function

F ⊗G : V1 × · · · × Vk ×W1 × · · · ×Wl → R
(v1, . . . , vk, w1, . . . , wl) 7→ F (v1, . . . , vk)G(w1, . . . , wl)

is called the tensor product of F and G.

Exercise C.8:

(a) Show that, given F and G as above, the function F ⊗G is multilinear, that is,

F ⊗G ∈ L(V1, . . . , Vk,W1, . . . ,Wl;R).

(b) Show that the tensor product operation

−⊗− : L(V1, . . . , Vk;R)× L(W1, . . . ,Wl;R) → L(V1, . . . , Vk,W1, . . . ,Wl;R)
(F,G) 7→ F ⊗G

is bilinear, i.e., multilinear with two variables, and associative, i.e., for any multilin-
ear real-valued functions F,G,H, we have F ⊗ (G⊗H) = (F ⊗G)⊗H.

Given a finite-dimensional real vector space V , we described in Section 1 how to obtain
a basis for the dual space V ∗ = L(V ;R) from a basis for V . With the above operation at
hand, we may now generalize this to the space L(V1, . . . , Vk;R).
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Proposition C.9. Let V1, . . . , Vk be R-vector spaces of dimensions n1, . . . nk, respectively.
For each 1 ≤ j ≤ k, let

(
E

(j)
1 , . . . , E

(j)
nj

)
be a basis of Vj, and denote by

(
ε1(j), . . . , ε

nj

(j)

)
the

corresponding dual basis of V ∗
j . Then the set

B :=
{
εi1(1) ⊗ · · · ⊗ εik(k) | 1 ≤ i1 ≤ n1, . . . , 1 ≤ ik ≤ nk

}
is a basis for L(V1, . . . , Vk;R), which therefore has dimension n1 . . . nk.

Proof. First, given F ∈ L(V1, . . . , Vk;R), define for each multi-index I = (i1, . . . , ik) with
1 ≤ ij ≤ nj for all 1 ≤ j ≤ k, a number FI ∈ R by

FI := F
(
E

(1)
i1
, . . . , E

(k)
ik

)
.

Also, use the short-hand notation

ε⊗I := εi1(1) ⊗ · · · ⊗ εik(k).

We will show that

F =
∑
I

FI ε
⊗I ,

where the sum is taken over all multi-indices as above, and thereby show that B spans
L(V1, . . . , Vk;R). To this end, take (v1, . . . , vk) ∈ V1 × · · · × Vk. For integers ij between 1

and nj, let v
ij
j ∈ R be the coefficient of vj with respect to the basis

(
E

(j)
1 , . . . , E

(j)
nj

)
, i.e.,

v
ij
j = ε

ij
(j)(vj).

Then by the multilinearity of F we have

F (v1, . . . , vk) =
∑
I

vi11 · · · vikk F
(
E

(1)
i1
, . . . , E

(k)
ik

)
=
∑
I

vi11 · · · vikk FI .

On the other hand, we have[∑
I

FI ε
⊗I

]
(v1, . . . , vk) =

∑
I

FI ε
⊗I(v1, . . . , vk) =

∑
I

vi11 · · · vikk FI .

Hence F and
∑

I FIε
⊗I agree at any k-tuple and thus are equal, so B indeed spans

L(V1, . . . , Vk;R).
Finally, in order to see that B is linearly independent, suppose that we have∑

I

λI ε
⊗I = 0

for some real numbers λI ∈ R indexed by multi-indices I. Evaluating both sides at(
E

(1)
i1
, . . . , E

(k)
ik

)
for some fixed multi-index I = (i1, . . . , ik), we obtain by the same com-

putation as above that λI = 0. Hence, B is linearly independent.
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The proof of Proposition C.9 shows also that the components Fi1...ik of a multilinear
function F in terms of the basis elements in B are given by

Fi1...ik = F
(
E

(1)
i1
, . . . , E

(k)
ik

)
.

Thus, F is completely determined by its action on all possible sequences of basis vectors.

Remark C.10. You might have already encountered the abstract construction of the ten-
sor product of vector spaces. If so, then regarding the above discussion (which shows that
the real vector space L(V1, . . . , Vk;R) can be viewed as the set of all linear combinations
of objects of the form ω1 ⊗ · · · ⊗ ωk, where ωi ∈ V ∗

i are covectors), one should remark
the following: given finite-dimensional real vector spaces V1, . . . , Vk, there is a canonical
isomorphism

V ∗
1 ⊗ · · · ⊗ V ∗

k
∼= L(V1, . . . , Vk;R),

which is induced by the multilinear map

Φ: V ∗
1 × . . .× V ∗

k → L(V1, . . . , Vk;R)
Φ
(
ω1, . . . , ωk

)
(v1, . . . , vk) :=

(
ω1 ⊗ · · · ⊗ ωk

)
(v1, . . . , vk)

= ω1(v1) · · ·ωk(vk).

Under this canonical isomorphism, abstract tensors correspond to the concrete tensor
product of multilinear functions defined above. As it is a natural isomorphism, we may
use the expression V ∗

1 ⊗· · ·⊗V ∗
k as a notation for L(V1, . . . , Vk;R) (this is a typical example

of slight abuse of notation, where one identifies naturally isomorphic objects). Finally,
using Proposition C.5, we also obtain a canonical identification

V1 ⊗ · · · ⊗ Vk ∼= L(V ∗
1 , . . . , V

∗
k ;R).

Therefore, we may view the above construction as a concrete construction of the abstract
tensor product.

Let us now turn our attention to various spaces of multilinear functions on a finite-
dimensional real vector space that naturally appear in (differential) geometry.

Definition C.11. Let V be a finite-dimensional real vector space. For any integer k ≥ 1,
we denote by T k(V ∗) the space of k-multilinear functions on V , i.e.,

T k(V ∗) := L(V, . . . , V︸ ︷︷ ︸
k times

;R) ∼= V ∗ ⊗ . . .⊗ V ∗︸ ︷︷ ︸
k copies

.

By convention, we also define T 0(V ∗) := R. The elements of T k(V ∗) are often referred to
as covariant k-tensors on V .

Observe that every linear functional ω : V → R is (trivially) multilinear, so a covariant
1-tensor is just a covector on V . Thus,

T 1(V ∗) = V ∗.
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According to Proposition C.9, we obtain a basis for T k(V ∗) as follows. Assume that
V has dimension n, let (E1, . . . , En) be a basis for V and denote by (ε1, . . . , εn) the dual
basis for V ∗. For a multi-index I = (i1, . . . , ik), where 1 ≤ ij ≤ n for all j, define the
elementary covariant k-tensor ε⊗I by the formula

ε⊗I := εi1 ⊗ · · · ⊗ εik

(see the proof of Proposition C.9) and for an integer m ∈ Z≥1, denote by [m] the set
{1, . . . ,m}. Then the set {

ε⊗I | I ∈ [n][k]
}

is a basis for T k(V ∗); in particular, we have

dimR T
k(V ∗) = nk.

Therefore, every covariant k-tensor α ∈ T k(V ∗) can be written uniquely in the form

α = αI ε
⊗I = αi1...ik ε

i1 ⊗ · · · ⊗ εik ,

where the nk coefficients αI = αi1...ik are determined by

αi1...ik = α(Ei1 , . . . , Eik).

For example, T 2(V ∗) is the space of bilinear forms on V – note that a covariant 2-tensor
on V is simply a real-valued bilinear function of two vectors – and every bilinear form on
V can be written as β = βij ε

i ⊗ εj for some uniquely determined n× n matrix (βij).

Definition C.12. For a covariant k-tensor α ∈ T k(V ∗) and a permutation σ ∈ Sk, denote
by σα the covariant k-tensor given by

σα : V × · · · × V → R
(v1, . . . , vk) 7→ α

(
vσ(1), . . . , vσ(k)

)
.

In the following two sections we will discuss two important subspaces of T k(V ∗),
namely the subspaces of symmetric resp. alternating covariant k-tensors. Both are de-
scribed by the way that a permutation of the arguments of the given covariant k-tensor
changes its value. A significant application of symmetric tensors in the theory of smooth
manifolds is in the form of Riemannian metrics. Loosely speaking, a Riemannian metric is
a choice of an inner product on each tangent space of the given manifold, varying smoothly
from point to point, and allows one to define geometric concepts such as lenghts, angles
and distances on the manifold. Riemannian metrics will not be discussed in this course,
and this is the main reason why the discussion about symmetric tensors in Section 3 will
be kept to a minimum. On the other hand, differential forms will be discussed thoroughly
in Lecture 13 and Lecture 14 of this course. They constitute a significant application of
alternating tensors in smooth manifold theory, and they will be presented in Section 4.
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3 Symmetric Tensors

In all probability, you have already encountered the concept of inner product on a finite-
dimensional real vector space V . It is a bilinear map ⟨·, ·⟩ : V ×V → R which is symmetric
and positive definite; in particular, ⟨·, ·⟩ is a covariant 2-tensor on V , having the additional
property that its value is unchanged when the two input arguments are exchanged; namely,
we have ⟨v1, v2⟩ = ⟨v2, v1⟩ for any v1, v2 ∈ V . We now generalize this notion to any
covariant k-tensor on V .

Definition C.13. Let V be a finite-dimensional real vector space.

(a) A covariant k-tensor α ∈ T k(V ∗) on V is said to be symmetric if its value is un-
changed by interchanging any pair of its arguments; namely, for all v1, . . . , vk ∈ V
and all 1 ≤ i < j ≤ k, we have

α(v1, . . . , vi, . . . , vj, . . . , vk) = α(v1, . . . , vj, . . . , vi, . . . , vk).

(b) The set of symmetric covariant k-tensors on V is denoted by Σk(V ∗). It is clearly a
linear subspace of T k(V ∗). By convention, we define Σ0(V ∗) := R, and we also note
that Σ1(V ∗) = T 1(V ∗) = V ∗.

Exercise C.14: We define a projection Sym: T k(V ∗) → Σk(V ∗), called symmetrization,
by the formula

Sym(α) :=
1

k!

∑
σ∈Sk

σα,

where σα was defined in Definition C.12. Show that Sym is well-defined and linear, and
that the following are equivalent:

(a) α is symmetric,

(b) α = σα for all σ ∈ Sk,

(c) α = Sym(α).

4 Alternating Tensors

Recall that the determinant may be regarded as a function det : Rn×· · ·×Rn → R, taking
as input n column vectors with n entries each, and having as output the determinant of
the n × n matrix formed by these n column vectors. This map is multilinear, so det is
a covariant n-tensor on Rn. Moreover, it has the property that its value changes sign
whenever two of its input entries are interchanged; in other words, det is an alternating
n-tensor. We now generalize this notion to arbitrary covariant k-tensors.

Definition C.15. Let V be a finite-dimensional real vector space.

(a) A covariant k-tensor α ∈ T k(V ∗) on V is said to be alternating (or anti-symmetric
or skew-symmetric) if its value changes sign whenever any two of its arguments are
interchanged; namely, for all v1, . . . , vk ∈ V and 1 ≤ i < j ≤ k, we have

α(v1, . . . , vi, . . . , vj, . . . , vk) = −α(v1, . . . , vj, . . . , vi, . . . , vk).
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(b) The set of alternating covariant k-tensors on V is denoted by Λk(V ∗). It is clearly a
linear subspace of T k(V ∗) and its elements of Λk(V ∗) are also called exterior forms,
multicovectors or k-covectors. By convention, we define Λ0(V ∗) := R, and we also
note that Λ1(V ∗) = T 1(V ∗) = V ∗.

Note that every covariant 2-tensor β can be expressed as a sum of an alternating and
a symmetric tensor, because

β(v, w) =
1

2

(
β(v, w)− β(w, v)

)
+

1

2

(
β(v, w) + β(w, v)

)
= α(v, w) + σ(v, w),

where

α(v, w) :=
1

2

(
β(v, w)− β(w, v)

)
∈ Λ2(V ∗)

is an alternating 2-tensor on V and

σ(v, w) :=
1

2

(
β(v, w) + β(w, v)

)
∈ Σ2(V ∗)

is a symmetric 2-tensor on V . However, this is not true for tensors of higher rank, as the
following exercise demonstrates.

Exercise C.16: Let (e1, e2, e3) be the standard dual basis for (R3)∗. Show that e1⊗e2⊗e3
is not equal to a sum of an alternating tensor and a symmetric tensor.

Recall that there is a group homomorphism sgn: Sk → {±1}, which maps a permuta-
tion σ ∈ Sk to 1 if it is a product of an even number of transpositions (even permutation),
and to −1 otherwise (odd permutation). We may use it to describe alternating tensors as
follows.

Exercise C.17: We define a projection Alt : T k(V ∗) → Λk(V ∗), called alternation, by
the formula

Alt(α) :=
1

k!

∑
σ∈Sk

(sgnσ) σα,

where σα was defined in Definition C.12. Show that Alt is well-defined and linear, and
that the following are equivalent:

(a) α is alternating,

(b) α = (sgnσ) σα for all σ ∈ Sk,

(c) α = Alt(α),

(d) α(v1, . . . , vk) = 0 whenever v1, . . . , vk ∈ V are linearly dependent,

(e) α(v1, . . . , vk) = 0 whenever there are i ̸= j such that vi = vj.

Example C.18. Let us explicitly compute Alt for 1-, 2- and 3-tensors.

• If α is a 1-tensor, then Alt(α) = α.
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• If β is a 2-tensor, then

Alt(β)(u, v) =
1

2

(
β(u, v)− β(v, u)

)
.

• If γ is a 3-tensor, then

Alt(γ)(u, v, w) =
1

6

(
γ(u, v, w) + γ(v, w, u) + γ(w, u, v)

−γ(v, u, w)− γ(u,w, v)− γ(w, v, u)
)
.

4.1 Elementary Alternating Tensors

Recall that for any basis of V , we described an induced basis of T k(V ∗) in terms of tensor
products of elements of the dual basis; cf. Proposition C.9. We obtain here a similar
description for a basis of Λk(V ∗).

Let V be a real vector space of dimension n, let (E1, . . . , En) be a basis for V ,
and denote by (ε1, . . . , εn) the corresponding dual basis for V ∗. For a multi-index I =
(i1, . . . , ik) ∈ [n][k], define the elementary alternating k-tensor (or elementary k-covector)
εI by the formula

εI := k! Alt
(
ε⊗I
)
,

where
ε⊗I = εi1 ⊗ · · · ⊗ εik ∈ T k(V ∗)

is the elementary k-tensor. Therefore, if v1, . . . , vk ∈ V , then the value of εI at the k-tuple
(v1, . . . , vk) is given by the formula

εI(v1, . . . , vk) =
∑
σ∈Sk

(sgnσ) ε⊗I
(
vσ(1), . . . , vσ(k)

)
=
∑
σ∈Sk

(sgnσ)
∏

1≤j≤k

εij
(
vσ(j)

)

= det

ε
i1(v1) · · · εi1(vk)
...

. . .
...

εik(v1) · · · εik(vk)

 .

In other words, to compute εI(v1, . . . , vk), we write the coefficients of (v1, . . . , vk) with
respect to the basis (E1, . . . , En) of V in the form of a n×k-matrix, we consider the k×k
submatrix formed by the lines i1, . . . , ik, and then we compute its determinant.

Example C.19. In terms of the standard dual basis (e1, e2, e3) for (R3)∗, we have

e13(v, w) = det

(
v1 w1

v3 w3

)
= v1w3 − v3w1,

since v = v1e1 + v2e2 + v3e3 and w = w1e1 + w2e2 + w3e3, and

e123(v, w, z) = det(v, w, z).
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Since Alt : T k(V ∗) → Λk(V ∗) is surjective, we know that
{
εI | I ∈ [n][k]

}
is a gener-

ating set of Λk(V ∗). To extract from it a basis of Λk(V ∗), we need the following lemma,
which describes the redundancy of

{
εI | I ∈ [n][k]

}
. In order to state it nicely, we need to

introduce the following notation: for a multi-index I ∈ [n][k] and a permutation σ ∈ Sk,
denote by Iσ the multi-index

Iσ =
(
iσ(1), . . . , iσ(k)

)
.

Also, denote by δIJ the following generalization of the Kronecker-delta to multi-indices
I, J ∈ [n][k]:

δIJ :=

{
sgnσ if neither I nor J have repeated entries and J = Iσ for some σ ∈ Sk,

0 if I or J have repeated entries or J is not a permutation of I.

and observe that

δIJ = det


δi1j1 . . . δi1jk
...

. . .
...

δikj1 . . . δikjk

 .

Lemma C.20. With the same notation as in the preceeding paragraph, the following
statements hold:

(a) If I has a repeated index, then εI = 0.

(b) If J = Iσ for some σ ∈ Sk, then ε
J = (sgnσ) εI .

(c) For I, J ∈ [n][k] we have
εI
(
Ej1 , . . . , Ejk

)
= δIJ .

Proof. Exercise!

Lemma C.20 tells us that from the generating set
{
εI | I ∈ [n][k]

}
of Λk(V ∗), we may

discard all those εI ’s for which I has a repeated index, and for any I having no re-
peated index, we need only take one element from the set {εIσ | σ ∈ Sk} and dis-
card the rest. A nice choice is thus the following: notice that for any multi-index I
having no repeated indices, there exists a unique permutation σ ∈ Sk such that Iσ is
strictly increasing, i.e., iσ(1) < · · · < iσ(k). Therefore, according to Lemma C.20, the set{
εI | I ∈ [n][k] is strictly increasing

}
still generates Λk(V ∗), and there is no obvious re-

dundancy in it. Essentially due to Lemma C.20(c), this set is linearily independent, and
thus we obtain the following result:

Proposition C.21. With the same notation as above, the set{
εI | I ∈ [n][k] is a strictly increasing multi-index

}
is a basis for Λk(V ∗). In particular, we have

dimR Λ
k(V ∗) =

(
n

k

)
=

n!

k!(n− k)!
,

and
Λk(V ∗) = {0} for k > n.
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Proof. Assume first that k > n. Since then every k-tuple of vectors is linearly dependent,
it follows from Exercise C.17(d) that Λk(V ∗) = {0}.

Assume now that k ≤ n. We need to show that

E :=
{
εI | I ∈ [n][k] is a strictly increasing multi-index

}
is linearly independent and spans Λk(V ∗). The fact that E generates Λk(V ∗) was already
discussed above. Suppose now that we have some linear relation∑

I∈[n][k] strictly increasing

λI ε
I = 0

for some λI ∈ R. If we fix a strictly increasing multi-index J ∈ [n][k], then evaluating the
above relation at (Ej1 , . . . , Ejk) gives λJ = 0 according to Lemma C.20(c). Thus, E is
linearly independent. In conclusion, E is a basis of Λk(V ∗), as desired.

In particular, if V is a real vector space of dimension n, then the above proposition
implies that Λn(V ∗) is 1-dimensional, spanned by the elementary n-covector ε(1,...,n). As
discussed in the beginning of this subsection, ε(1,...,n) sends an n-tuple (v1, . . . , vn) to the
determinant of the matrix (vij)1≤i,j,≤n, where v

i
j = εi(vj) is the i-th component of vj with

respect to the chosen basis of V . Note that when V = Rn with the standard basis, the
covector ε(1,...,n) (which by definition is a function from (Rn)n = Rn2

to R) is precisely the
usual determinant function.

One consequence of this observation is the following useful description of the behavior
of an n-covector on an n-dimensional vector space under linear maps. Recall that if
T : V → V is a linear map, then the determinant of T is defined to be the determinant of
the matrix representation of T with respect to any basis (recall that any two such matrix
representation are conjugations of each other and hence have the same determinant, so
this is well-defined).

Proposition C.22. Let V be an n-dimensional real vector space and let ω ∈ Λn(V ∗). If
T : V → V is any linear map and if v1, . . . , vn ∈ V are arbitrary vectors, then

ω(Tv1, . . . , T vn) = (detT )ω(v1, . . . , vn). (•)

Proof. Let (Ei) be any basis for V , and let (εi) be the dual basis. Denote by (T ji )1≤i,j≤n the
matrix of T with respect to this basis, and set Ti = TEi =

∑
j T

j
i Ej. By Proposition C.21,

we can write ω = cε(1,...,n) for some c ∈ R. Since both sides of (•) are multilinear
functions of (v1, . . . , vn), it suffices to verify the identity when the vi’s are basis vectors.
Furthermore, since both sides are alternating, by Lemma C.20 we only need to check the
case (v1, . . . , vn) = (E1, . . . , En). In this case, the right-hand side of (•) is

(detT ) c ε(1,...,n)(E1, . . . , En) = c detT.

On the other hand, the left-hand side of (•) reduces to

ω(TE1, . . . , TEn) = c ε(1,...,n)(T1, . . . , Tn) = c det
(
(εj(Ti))1≤i,j≤n

)
= c det

(
(T ji )1≤i,j≤n

)
.

which is thus equal to the right-hand side.
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4.2 The Wedge Product

Recall that for any covariant tensors α ∈ T k(V ∗) and β ∈ T l(V ∗) we defined the covariant
(k+ l)-tensor α⊗β; see Definition C.7. This allowed us to build ’higher’ covariant tensors
out of lower ones, and also to describe a basis for T k(V ∗) in terms of tensor products of
elements of a dual basis. We now describe a similar construction for alternating tensors.

Definition C.23. Let V be a finite-dimensional real vector space, and let ω ∈ Λk(V ∗)
and η ∈ Λl(V ∗) be alternating tensors on V . The wedge product (or exterior product) of
ω and η is denoted by ω∧ η and is defined to be the (k+ l)-covector given by the formula

ω ∧ η :=
(k + l)!

k!l!
Alt(ω ⊗ η).

As ⊗ is bilinear and Alt is linear, the map − ∧ − : Λk(V ∗) × Λl(V ∗) → Λk+l(V ∗) is
bilinear. It is therefore natural to examine what the wedge product looks like on basis
vectors. This also motivates the somewhat mysterious normalization factor (k+ l)!/(k!l!),
because we have the following result.

Lemma C.24. Let V be a finite-dimensional real vector space, and let (ε1, . . . , εn) be
a basis for V ∗. For any multi-indices I = (i1, . . . , ik) and J = (j1, . . . , jl) we have the
formula

εI ∧ εJ = εI⌢J ,

where I ⌢ J = (i1, . . . , ik, j1, . . . , jl) is the (k + l)-multi-index obtained by concatenating
I and J .

Proof. By multilinearity, as in the proof of Proposition C.9, it suffices to show that

εI ∧ εJ(Ep1 , . . . , Epk+l
) = εI⌢J(Ep1 , . . . , Epk+l

) (⋆)

for any sequence of basis vectors (Ep1 , . . . , Epk+l
). We do this by considering several cases.

Case 1: The multi-index P = (p1, . . . , pk+l) has a repeated index. Then by part (e) of
Exercise C.17, both sides of (⋆) evaluate to 0.

Case 2: P contains an index that does not appear in either I or J . In this case, the
right-hand side of (⋆) is zero by part (c) of Lemma C.20. Similarly, each term in the
expansion of the left-hand side of (⋆) involves either I or J evaluated on a sequence of
basis vectors that is not a permutation of I or J , respectively, so the left-hand side is also
zero.

Case 3: P = I ⌢ J and P has no repeated indices. In this case, the right-hand side of
(⋆) is equal to 1, again by part (c) of Lemma C.20, so we need to show that the left-hand
side is also equal to 1. By definition,

εI ∧ εJ(Ep1 , . . . , Epk+l
) =

=
(k + l)!

k!l!
Alt(εI ⊗ εJ)

=
1

k!l!

∑
σ∈Sk+l

(sgnσ)εI(Epσ(1)
, . . . , Epσ(k)

)εJ(Epσ(k+1)
, . . . , Epσ(k+l)

).
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By Lemma C.20 again, the only terms in the sum above that give nonzero values are
those in which σ permutes the first k indices and the last l indices of P separately. In
other words, σ must be of the form σ = τη, where τ ∈ Sk acts by permuting {1, . . . , k}
and η ∈ Sl acts by permuting {k + 1, . . . , k + l}. Since then sgn σ = (sgn τ)(sgn η), we
have

εI ∧ εJ(Ep1 , . . . , Epk+l
) =

=
1

k!l!

∑
τ∈Sk
η∈Sl

(sgn τ)(sgn η) εI(Epτ(1) , . . . , Epτ(k)) ε
J(Epk+η(1)

, . . . , Epk+η(l)
)

=

(
1

k!

∑
τ∈Sk

(sgn τ) εI(Epτ(1) , . . . , Epτ(k))

)(
1

l!

∑
η∈Sl

(sgn η) εJ(Epk+η(1)
, . . . , Epk+η(l)

)

)
=
(
Alt(εI)(Ep1 , . . . , Epk)

) (
Alt(εJ)(Epk+1

, . . . , Epk+l
)
)

= εI(Ep1 , . . . , Epk) ε
J(Epk+1

, . . . , Epk+l
)

= 1

where we used that Alt fixes alternating tensors by Exercise C.17, and again used part
(c) of Lemma C.20 (recall that we are in the case P = I ⌢ J).

Case 4: P is a permutation of I ⌢ J and has no repeated indices. In this case,
applying a permutation to P brings us back to Case 3. As both sides of (⋆) are alternating,
the effect of this permutation is to multiply both sides by the same sign. Hence the result
holds in this final case as well.

This completes the proof of the lemma.

Together with the bilinearity of −∧−, this gives the following properties of the wedge
product.

Proposition C.25. Let ω, η, ξ be multicovectors on a finite-dimensional real vector space
V . Then we have the following properties:

(a) Associativity:
ω ∧ (η ∧ ξ) = (ω ∧ η) ∧ ξ.

(b) Anticommutativity: if ω ∈ Λk(V ∗) and η ∈ Λl(V ∗), then

ω ∧ η = (−1)kl η ∧ ω.

(c) If (ε1, . . . , εn) is a basis of V ∗ and I = (i1, . . . , ik) a multi-index, then

εi1 ∧ . . . ∧ εik = εI .

(d) For any ω1, . . . , ωk ∈ V ∗ and v1, . . . , vk ∈ V we have

ω1 ∧ . . . ∧ ωk(v1, . . . , vk) = det
((
ωj(vi)

)
1≤i,j≤k

)
.

Proof. Exercise!
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Due to Proposition C.25(c), we generally use the notations εI and εi1 ∧ . . . ∧ εik

interchangably.
An element η ∈ Λk(V ∗) is said to be decomposable if it can be expressed in the form

η = ω1 ∧ . . . ∧ ωk for some covectors ω1, . . . , ωk ∈ V ∗. Note that not every k-covector
is decomposable when k > 1; however, it follows from Proposition C.21 and Proposi-
tion C.25(c) that every k-covector can be written as a linear combination of decomposable
ones.
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atlas, 4

complete, 4

maximal, 4

smooth, 4

smooth, consistently oriented, 103

boundary

chart, 95

of a manifold, 95

point, 95

topological invariance of, 96

bump function

continuous, 14

smooth, 14

bundle of covariant k-tensors, 87

closed map, 35

closed map lemma, 36

coframe

dual, 82

global, 81

local, 81

compactly supported

function, 13

components

of a (rough) section, 61

of a tangent vector, 25

coordinate

coframe, 82

coordinate ball, 2

smooth, 6

coordinate basis, 25

coordinate chart, 2, 95

boundary chart, 95

interior chart, 95

smooth, 6

smooth, negatively oriented, 103

smooth, positively oriented, 103

coordinate coframe, 82

coordinate covector field, 80

coordinate cube, 2

smooth, 6

coordinate domain, 2

smooth, 6

coordinate frame, 64

coordinate map, 2

smooth, 6

coordinate neighborhood, 2

smooth, 6

coordinate representation

of a function, 9

of a map, 10

coordinate vector, 25

coordinate vector field, 64

coordinates

local, 2

cotangent bundle, 80

cotangent map, 84

cotangent space

to a manifold, 79

covariant k-tensor fields, 87

covector, 127

decomposable, 140

positively oriented n-covector, 101

covector field

component functions of, 81

continuous, 81

coordinate, 80
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pullback of, vanishes, 87
restriction of, 87
restriction of, vanishes, 87
rough, 81
smooth, 81
vanishes along a submanifold, 87
vanishes at points of a submanifold, 87

critical point
of a map, 48

critical value
of a map, 49

cube
closed, 39
open, 39

curve
continuous, 30
reparametrization, 109
segment, 107
segment, piecewise smooth, 107
segment, smooth, 107
smooth, 31

defining function
local, 50
of an embedded submanifold, 50

defining map
local, 50
of an embedded submanifold, 50

derivation
at a point, 20, 22
of C∞(M), 66

diffeomorphic manifolds, 12
diffeomorphism, 12

local, 37
differential

global, 30
of a function, 83
of a smooth map, 23, 97

differential 1-form, 81
differential k-form, 87

closed, 94
degree of, 87
exact, 94
wedge product, 88

differential n-form
orientation form, 103
positively oriented, 103

directional derivative in Rn, 19
domain of integration, 111
dual

basis, 127
map, 128
space, 127

exterior derivative
naturality, 94
of a k-form on Rn, 90
of a k-form on a smooth manifold, 93

exterior differentiation, 93

flow, 73
domain, 73
fundamental theorem on, 74
generated by a vector field, 75
global, 73
infinitesimal generator of, 74
maximal, 73
of a vector field, 75

flow domain, 73
frame

coordinate, 64
dual, 82
global, 60
local, 60
negatively oriented, 101
positively oriented, 101
smooth, 60

function supported in set, 13

geometric tangent space, 19
geometric tangent vector, 19
global flow, 73
global trivialization

of a vector bundle, 56
graph

of a continuous function, 2
of a smooth function, 6
of a smooth map, 46

graph coordinates, 3
Green’s theorem, 115

homeomorphism, 1
local, 37

hypersurface
embedded, 45

integral
of a compactly supported n-form on a

manifold, 113
of an n-form over a domain of

integration in Rn, 111
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of an n-form over an open subset in
Rn, 111

integral curve
maximal, 70
of a vector field, 70

interior
chart, 95
of a manifold, 95
point, 95

inverse function theorem
for manifolds, 37

Jacobian matrix, 26

level set, 48
of a constant-rank map, 49
regular, 49

Lie bracket, 68
coordinate formula for, 68
naturality of, 69
of vector fields tangent to a

submanifold, 69
line integral, 107

fundamental theorem for, 110
parameter independence of, 109

local k-slice condition, 47
local defining function, 50
local defining map, 50
local diffeomorphism, 37

orientation-preserving, 106
orientation-reversing, 106

local embedding theorem, 41
local homeomorphism, 37
local section theorem, 41
local slice criterion, 47
local trivialization

of a vector bundle, 55
smooth, 56

locally finite, 13

manifold
ambient, 45
smooth, 5
smooth, nonorientable, 101
smooth, orientable, 101
smooth, with boundary, 96
topological, 1
topological, with boundary, 95

natural coordinates
on the cotangent bundle, 81

on the tangent bundle, 30

open map, 35
orientable smooth manifold, 101
orientation

determined by a coordinate atlas, 103
determined by an n-form, 102
induced by a local diffeomorphism

(pullback), 106
induced on ∂M , 105
of a real vector space, 100
of a smooth manifold, 101
pointwise, continuous, 101
pointwise, of a smooth manifold, 101
Stokes, on ∂M , 105

orientation form, 103
oriented

consistently, ordered bases, 99
consistently, smooth atlas, 103
frame, negatively, 101
frame, positively, 101
negatively, smooth chart, 103
positvely, smooth chart, 103
vector space, 100
vector space, negatively, 100
vector space, positively, 100

partition of unity, 13
smooth, 13

partitions of unity
smooth, 96

projective space, 119
as a smooth manifold, 123
as a topological manifold, 122

proper map, 35, 36
pullback

of a covector field, 85
pointwise, 84

quotient map, 42
quotient topology, 42

rank
constant, 33
full, 33
of a smooth map, 33

rank theorem, 38
global, 40

rectangle
closed, 39
open, 39
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regular level set, 49
regular level set theorem, 50
regular point

of a map, 48
regular value

of a map, 49
reparametrization of a curve, 109

backward, 109
forward, 109

Sard’s theorem, 125
section

component functions, 61
global, 59
linearly independent, 60
local, 41
of a map, 41
of a vector bundle, 59
rough, 59
smooth, 59
spanning, 60
zero, 59

slice, 47
slice chart, 47
slice coordinates, 47
smooth embedding, 33
smooth function, 9
smooth immersion, 33
smooth map, 10, 96

on arbitrary subset, 15
on open subset of Hn, 96

smooth structure
determined by an atlas, 5
on topological manifold, 5
on topological manifold with boundary,

96
smooth submersion, 33
smoothly compatible charts, 4
space

Hausdorff, 1
locally Euclidean, 1
second-countable, 1

standard open cover of RPn, 122
standard orientation

of Sn, 102
of Rn, 100

standard smooth structure
on Sn, 7
on Rn, 6
on RPn, 123

Stokes orientation, 105
Stokes’ theorem, 115
subbundle, 62

smooth, 62
submanifold

codimension, 45, 50
embedded, 45
immersed, 50
open, 7
properly embedded, 46

support
of a function, 13
of a vector field, 63

tangent bundle, 28
ambient, 59

tangent covector
to a manifold, 79

tangent map, 23
tangent space

geometric, 19
to a smooth manifold, 22
to a smooth manifold with boundary,

97
to a submanifold, 52–54
to an open submanifold, 24

tangent vector
geometric, 19
inward-pointing, 97
outward-pointing, 97
to a smooth manifold, 22

topological embedding, 33
transition function between smooth local

trivializations, 57
transition map, 4
trivialization

global, 56
local, 55
smooth local, 56

unit n-sphere, Sn, 3
unit ball, Bn, 3
upper half-space

boundary, 95
closed, 95
interior, 95
open, 95

vector bundle, 55
base, 55
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fiber, 55
global frame, 60
global trivialization, 56
local frame, 60
local trivialization, 55
product bundle, 56
projection, 55
restriction of, 58
section of, 59
smooth, 56
smooth (local or global) frame, 60
smooth subbundle of, 62
smoothly trivial, 56
subbundle of, 62
total space, 55
trivial, 56
Whitney sum, 58
zero section, 59

vector field
along a submanifold, 104
compactly supported, 63
complete, 76

component functions of, 64

continuous, 63

coordinate, 64

Euler, 64

flow, 75

integral curve of, 70

nowhere tangent to a submanifold, 104

pushforward, 67

rough, 63

smooth, 63

tangent to a submanifold, 67

tangent to a submanifold at a point, 67

velocity vector of curve, 31

Whitney’s embedding theorem, 125

strong, 125

weak, 125

Whitney’s immersion theorem, 125

strong, 125

weak, 125

zero set, 48
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