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Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf pXY (x, y).
Let a, b ∈ R be fixed.

(a) Prove that E[aX + bY ] = aE[X] + bE[Y ]. Do not assume independence.

(b) Prove that if X and Y are independent random variables, then E[X · Y ] = E[X] · E[Y ].

(c) Assume that X and Y are not independent. Find an example where E[X · Y ] ̸= E[X] · E[Y ], and
another example where E[X · Y ] = E[X] · E[Y ].

(d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

Cov(X,Y ) := E [(X − E[X])(Y − E[Y ])] = 0. (1)

(e) Find an example where X and Y are uncorrelated but dependent.

(f) Assume that X and Y are uncorrelated and let σ2
X and σ2

Y be the variances of X and Y, respec-
tively. Find the variance of aX + bY and express it in terms of σ2

X , σ2
Y , a, b .

Hint: First show that Cov(X,Y ) = E[X · Y ]− E[X] · E[Y ] .

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

pX(x) =
1√
2πσ2

e−
(x−m)2

2σ2 (2)

is called a Gaussian random variable.

(a) Explicitly calculate the mean E[X], the second moment E[X2], and the variance V ar[X] of the
random variable X.

(b) Let us now consider events of the following kind:

Pr(X < α). (3)

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will
rewrite it in terms of the standard Q-function:

Q(x) =

∫ ∞

x

1√
2π

e−
u2

2 du (4)
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Express Pr(X < α) in terms of the Q-function and the parameters m and σ2 of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have
bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds,
learning some very general and powerful tools along the way:

(c) Derive the Markov inequality, which says that for any non-negative random variable X and positive
a , we have

Pr(X ≥ a) ≤ E[X]

a
. (5)

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable
Z exceeds b is given by

Pr(Z ≥ b) ≤ E
[
es(Z−b)

]
, s ≥ 0. (6)

(e) Use the Chernoff bound to show that

Q(x) ≤ e−
x2

2 for x ≥ 0. (7)

Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

ϕ(s) := lnE[exp(sX)] = ln
∑
x

p(x) exp(sx)

of a real-valued random variable X taking values on a finite set, and showed that ϕ′(s) = E[Xs] where Xs

is a random variable taking the same values as X but with probabilities ps(x) := p(x) exp(sx) exp(−ϕ(s)) .

(a) Show that
ϕ′′(s) = Var(Xs) := E[X2

s ]− E[Xs]
2

and conclude that ϕ′′(s) ≥ 0 and the inequality is strict except when X is deterministic.

(b) Let xmin := min{x : p(x) > 0} and xmax := max{x : p(x) > 0} be the smallest and largest values
X takes. Show that

lim
s→−∞

ϕ′(s) = xmin, and lim
s→∞

ϕ′(s) = xmax.

Problem 4: Hoeffding’s Lemma

Prove Lemma 2.4 in the lecture notes. In other words, prove that if X is a zero-mean random vari-
able taking values in [a, b] then

E[eλX ] ≤ e
λ2

2 [(a−b)2/4].

Expressed differently, X is [(a− b)2/4] -subgaussian.

Hint: You can use the following steps to prove the lemma:

1. Let λ > 0 . Let X be a random variable such that a ≤ X ≤ b and E[X] = 0 . By considering the
convex function x → eλx, show that

E[eλX ] ≤ b

b− a
eλa − a

b− a
eλb. (8)
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2. Let p = −a/(b− a) and h = λ(b− a) . Verify that the right-hand side of (8) equals eL(h) where

L(h) = −hp+ log(1− p+ peh).

3. By Taylor’s theorem, there exists ξ ∈ (0, h) such that

L(h) = L(0) + hL′(0) +
h2

2
L′′(ξ).

Show that L(h) ≤ h2/8 and hence E[eλX ] ≤ eλ
2(b−a)2/8 .

Problem 5: Expected Maximum of Subgaussians

Let {Xi}ni=1 be a collection of n σ2 -subgaussian random variables, not necessarily independent of

each other. Let Y = maxi∈{1,2,··· ,n} Xi. Prove that E[Y ] ≤
√
2σ2 log n. Hint: Recall that by Jensen,

eλE[X] ≤ E[eλX ].
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