Problem Set 1 For the Exercise Session on September 10

Last name	T. First name	CIPER. . Nr 80	

Problem 1: Review of Random Variables

Let X and Y be discrete random variables defined on some probability space with a joint pmf $p_{XY}(x, y)$. Let $a, b \in \mathbb{R}$ be fixed.

(a) Prove that $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$. Do not assume independence.

(b) Prove that if X and Y are independent random variables, then $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

(c) Assume that X and Y are not independent. Find an example where $\mathbb{E}[X \cdot Y] \neq \mathbb{E}[X] \cdot \mathbb{E}[Y]$, and another example where $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

 (d) Prove that if X and Y are independent, then they are also uncorrelated, i.e.,

$$
Cov(X,Y) := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = 0.
$$
\n(1)

 (e) Find an example where X and Y are uncorrelated but dependent.

(f) Assume that X and Y are uncorrelated and let σ_X^2 and σ_Y^2 be the variances of X and Y, respectively. Find the variance of $aX + bY$ and express it in terms of σ_X^2 , σ_Y^2 , a, b. **Hint:** First show that $Cov(X, Y) = \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Problem 2: Review of Gaussian Random Variables

A random variable X with probability density function

$$
p_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}} \tag{2}
$$

is called a Gaussian random variable.

(a) Explicitly calculate the mean $\mathbb{E}[X]$, the second moment $\mathbb{E}[X^2]$, and the variance $Var[X]$ of the random variable X.

 (b) Let us now consider events of the following kind:

$$
\Pr(X < \alpha). \tag{3}
$$

Unfortunately for Gaussian random variables this cannot be calculated in closed form. Instead, we will rewrite it in terms of the standard Q-function:

$$
Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du
$$
\n(4)

Express $Pr(X < \alpha)$ in terms of the Q-function and the parameters m and σ^2 of the Gaussian pdf.

Like we said, the Q-function cannot be calculated in closed form. Therefore, it is important to have bounds on the Q-function. In the next 3 subproblems, you derive the most important of these bounds, learning some very general and powerful tools along the way:

 (c) Derive the Markov inequality, which says that for any non-negative random variable X and positive a, we have

$$
\Pr(X \ge a) \le \frac{\mathbb{E}[X]}{a}.\tag{5}
$$

(d) Use the Markov inequality to derive the Chernoff bound: the probability that a real random variable Z exceeds b is given by

$$
\Pr(Z \ge b) \le \mathbb{E}\big[e^{s(Z-b)}\big], \qquad s \ge 0. \tag{6}
$$

 (e) Use the Chernoff bound to show that

$$
Q(x) \le e^{-\frac{x^2}{2}} \quad \text{for } x \ge 0. \tag{7}
$$

Problem 3: Moment Generating Function

In the class we had considered the logarithmic moment generating function

$$
\phi(s) := \ln \mathbb{E}[\exp(sX)] = \ln \sum_{x} p(x) \exp(sx)
$$

of a real-valued random variable X taking values on a finite set, and showed that $\phi'(s) = \mathbb{E}[X_s]$ where X_s is a random variable taking the same values as X but with probabilities $p_s(x) := p(x) \exp(sx) \exp(-\phi(s))$.

(a) Show that

$$
\phi''(s) = \text{Var}(X_s) := \mathbb{E}[X_s^2] - \mathbb{E}[X_s]^2
$$

and conclude that $\phi''(s) \geq 0$ and the inequality is strict except when X is deterministic.

(b) Let $x_{\min} := \min\{x : p(x) > 0\}$ and $x_{\max} := \max\{x : p(x) > 0\}$ be the smallest and largest values X takes. Show that

$$
\lim_{s \to -\infty} \phi'(s) = x_{\min}, \text{ and } \lim_{s \to \infty} \phi'(s) = x_{\max}.
$$

Problem 4: Hoeffding's Lemma

Prove Lemma 2.4 in the lecture notes. In other words, prove that if X is a zero-mean random variable taking values in $[a, b]$ then

$$
\mathbb{E}[e^{\lambda X}] \le e^{\frac{\lambda^2}{2}[(a-b)^2/4]}.
$$

Expressed differently, X is $[(a - b)^2/4]$ -subgaussian.

Hint: You can use the following steps to prove the lemma:

1. Let $\lambda > 0$. Let X be a random variable such that $a \le X \le b$ and $\mathbb{E}[X] = 0$. By considering the convex function $x \to e^{\lambda x}$, show that

$$
\mathbb{E}[e^{\lambda X}] \le \frac{b}{b-a} e^{\lambda a} - \frac{a}{b-a} e^{\lambda b}.
$$
 (8)

2. Let $p = -a/(b - a)$ and $h = \lambda(b - a)$. Verify that the right-hand side of (8) equals $e^{L(h)}$ where

$$
L(h) = -hp + \log(1 - p + pe^h).
$$

3. By Taylor's theorem, there exists $\xi \in (0, h)$ such that

$$
L(h) = L(0) + hL'(0) + \frac{h^2}{2}L''(\xi).
$$

Show that $L(h) \leq h^2/8$ and hence $\mathbb{E}[e^{\lambda X}] \leq e^{\lambda^2(b-a)^2/8}$.

Problem 5: Expected Maximum of Subgaussians

Let $\{X_i\}_{i=1}^n$ be a collection of n σ^2 -subgaussian random variables, not necessarily independent of each other. Let $Y = \max_{i \in \{1, 2, \dots, n\}} X_i$. Prove that $\mathbb{E}[Y] \leq \sqrt{2\sigma^2 \log n}$. *Hint:* Recall that by Jensen, $e^{\lambda \mathbb{E}[X]} \leq \mathbb{E}[e^{\lambda X}].$