Fundamentals of electrical circuits and systems I
Prof. Jean-Philippe Thiran October 07, 2025

Solution Set 3

Solution 1: Hard and Easy

(a) A discrete-time sequence z[n] is given as
z[n] = z1[n] — z1[n + 3]

where

Find X (w).
(b) Compute the value of fj: X (w)dw .

Hint: you could do it the hard way, or the easy way. We recommend finding the easy way!

Solution: (a) By applying the linearity and shift in time properties, we obtain
X(w) = X1 (w) — ¥ X (w).

Since
1
Xl(w) = 1— %e_jw
we have that
1 — 3w
X(w) = 1 1, —jw
—1le

(b) We have that,

We substitute n =0,

Thus,



Solution 2: Frequency response

(a) Consider a continuous-time LTI system with frequency response H(w) and real and even impulse
response h(t) (that is, h(t) = h(—t)). Suppose that we apply an input z(t) = sin(wgt) to this system.
The resulting output can be shown to be of the form

y(t) = Asin(wot)
where A is a real number. Find A as a function of H(w), and wg. For full credit do this without taking

a Fourier Transform of x(t).

(b) Consider a continuous-time LTI system with frequency response H(w) = |H(w)|e/ 287 (@) and real
impulse response h(t). Suppose that we apply an input z(t) = cos(wot + ¢o) to this system. The
resulting output can be shown to be of the form

y(t) = Az(t —to)

where A is a nonnegative real number representing an amplitude-scaling and ty is a time delay. Find A
and to as a function of H(w), wp, and ¢q. For full credit do this without taking a Fourier Transform
of x(t).

Solution:

(a) Using Euler’s formula we can write

z(t) = % (ejwot — e*j“’ot) .

Since the impulse response is real and even, so is the frequency response: that is H(w) = H(—w).

Then,
y(t) = 2i (H(wo)ejwot o H(_wo)e—jwm)
J
= i (H(W())ejWOt — H(wo)e_‘ijt)
2j
1 . ,
= H(wy)— (efwot — g=Jwot
(wo) 5; ( )
= H(wp) sin (wot)
and A = H(WO) .

(b) Using Euler’s formula we can write

z(t) =

(6jw0t+j¢o + e*jwot*ﬁ%)

N — N~

(ej% elwot e*ﬂ¢oefjwot)

Since the impulse response is real, the frequency response satisfies H(w) = H*(—w). Then,

y(t) = = (H(wo)e? e/t + H(—wq)e /#0e~7w0t)

N~ DN —

(H(w0)€j¢0€jw0t +H*(w0)e_j¢°e_jw°t)
|H(w0)% ( Jgo-+i axg H(wo) giwot | o—jdo—i argH(wwefjwot)
= [H(wo)| cos (wot + arg H (wo) + ¢o)



and so A = |H(wo)| and ty = _arg H(wo)

wo

Solution 3: Ideal filters

(a) A continuous-time ideal low-pass filter has a frequency response

() 1, |w| < z
Hw) =
0, otherwise

Find the output when the filter is applied to each of the following inputs
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(b) A discrete-time ideal low-pass filter has a frequency response

H(w) = {Hw' =3

0, otherwise

on the interval —m < w < 7. Find the output when the filter is applied to each of the following inputs

13—Wn, z[n] = (=1)", x[n] =d[n]. (2)

z[n] = cos 5

Solution:

(a)
Taking the Fourier Transform of x(t) = cos 5t we note that X(w) is two delta pulses at w = Z and
Then H(w)X(w) =0 and so y(t) =0.

= _Z
w = 3 -

Taking the Fourier Transform of z(t) = 1 we note that X(w) is a delta pulse at w = 0. Then
H(w)X(w) = X(w) and so y(t) =1 for all ¢.

From Appendix 4.B we see that the Fourier Transform of z(t) = sinc (é) is non-zero only for |w| <
Then H(w)X(w) = X(w) and so y(t) =sinc (%) .

jus
6"

From Appendix 4.B we see that the Fourier Transform of z(t) = sinc (i) is itself a low-pass filter with
gain 4.That is

X() = {4, | <

0, otherwise

Then
4, |wl <Z
Yw) =HwXw)= 7' =5
@) (@)X (w) {O, otherwise
Taking the inverse Fourier Transform gives y(t) = %sinc (é) .

(b)



Note that z[n] = cos 13Zn = cos Zn. Taking the Fourier Transform of xz[n] again produces two delta
pulses at w = § and w = —% on the interval —7 < w < 7. Then H(w)X(w) = X(w) and so
y(t) = cos Gn.

o |l

Note again that z[n] = (—1)" = /™. Taking the Fourier Transform of z[n] again produces a pulse at
w = on the interval —7m < w < 7. Then H(w)X(w)=0 and so y(t) =0.

The Fourier Transform of z[n] = é[n] is X(w) = 1. Then Y(w) = H(w)X(w) = H(w). Taking the
inverse transform yields y[n| =

Solution 4: Composition of systems

N
L/ L
System H System H

Figure 1: A composed system.
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In this problem, we study the system composition illustrated in Figure 1 with input z(¢) and output
y(t), where we assume that the system H is known to be LTI and stable.

(a) Prove that the composed system shown in the figure is stable.

(b) Give the frequency response of the overall system in Figure 1 with input x(¢) and output y(¢) in
terms of the frequency response H(w) of the component system H.

(c) For the special case where the system H is the LTI system with impulse response h(t) = e~ 1l give an
explicit formula for the frequency response of the overall system (expressed as a ratio of two polynomials
in w).

Solution

(a)

System H System H

Figure 2: Labeled figure

Assume that |z(t)] < B for all ¢ and B < co. Then |u(t)| < C' because the system is stable thus,
(@) = Ju(t) + 2(1)]
<|u(t)| + |z(t)| < B+ C
the signal v(t) is bounded. Also |w(t)] < D because the system H is stable so

ly(t)| = |w(t) +v(t)]
< |w(t)| + |v(t)] < B+ C + D.



(b) From the figure above we can write the output in terms of input as follows

y(t) = v(t) + (v x h)(t)
and the frequency domain we have Y (w) = (1 4+ H(w))V(w). Similarly, V(w) = (1 4+ H(w))X (w), thus
the overall frequency response is (1 + H(w))?2.

(c) The frequency response of system H is

o) 0 9]
, , ‘ 1 1 2
H(w) :/ e~ ltle—iwt 3y :/ 6(1*JW)tdt+/ e~ (+iw)t gy — T + Tw S Tr o
oo 0 Jjw — jw w

— 00

The overall frequency response will be

2
14+ w?

B 9 + wt + 6w?
14wt 2w?

(1+ )?



Solution 5: Step response (Review)

During the course we have seen as the impulse response completely characterizes an LTI system. Un-
fortunately, it is rather difficult to produce an infinite amplitude pulse with infinitesimal duration in
practice. In this problem we define another type of response called the step response which is often used
to characterize an LTI system. It is defined, in continuous time, as:

s(t) = u(t) x h(t)

That is, s(t) characterizes how an LTI system reacts to the signal u(t).

(a) An LTI system is known to have an impulse response
h(t) = e “u(t — to)

where a,tg > 0. Find its step response.

(b) Use the convolution integral to show

where Y (w) is the Fourier transform for the output signal y(¢), Xw) is the Fourier transform for the
input signal z(t), and H(w) is the Fourier transform for the impulse response h(t).

Assume that the Fourier Transform of s(t) of an LTT system exists. Find the same input-output rela-
tionship in the frequency domain in terms of S(w). That is, you need to derive the formula that relates
X(w) to Y(w) in terms of S(w).

Solution:

(a)

If t <t then s(t) =0. Otherwise



and the final answer is

(b) Writing out the convolution integral
s(t) = u(t) * h(t)

|
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then

ds(t)y d [*
e a[w h(r)dr
= h(t)

where the last line follow from the fundamental theorem of calculus.

(¢) From part (b) we have that h(t) = dfi(:) and using differentiation in time property of Fourier
Transform gives H(w) = jwS(w). Combining this with the equation Y (w) = H(w)X (w) yields Y (w) =

JwS(w)X (w) .

Solution 6: A simple communication system

Many communication systems, for example mobile phones and other wireless devices, send information
across free space using electromagnetic waves. To send these electromagnetic waves across long distances,
the frequency of the transmitted signal must be very high compared to the frequency of the information
signal. An essential technique in designing such communication systems is called modulation. During
modulation an information signal to be transmitted is embedded, or modulated, onto a higher frequency
waveform called carrier. In this problem we analyze a simple communication system that uses the principle
of modulation.

Let z(t) be a real-valued signal for which X (w) =0 when |w| > 20007 . In order to communicate x(t)
over free space modulation is performed to produce the transmitted signal g¢(t), where

g(t) = x(t) cos 20007t.

(a) Find the Fourier transform, G(w), of the transmitted signal g(t).

Once the signal g(t) is received, it needs to be processed (demodulated) to recover z(t). A proposed
demodulation system is illustrated in Figure 5 where H is an ideal low pass filter with a frequency
response given by

_ b el <Swe
H(w) = {O, elswehere.
(b) Find the Fourier transform, Z(w), of the input to the low pass filter z(t).
(c) Find the gain b and the cut-off frequency w. such that y(t) = x(¢).
Solution: (a)

Applying the convolution in frequency property from Appendix 4.A and the Fourier transform pair for
cosine form Appendix 4.B we obtain

Gw) = %X(w) * 7(6(w — 20007) + §(w + 20007))

1
i(X(w —20007) + X (w + 20007)).



9(t) ~ ) v

\T/ L7t |

cos(20007t)

Figure 3: Proposed demodulation system.

(b)

Again, applying the convolution in frequency property from Appendix 4.A and the Fourier transform
pair for cosine form Appendix 4.B we obtain

Z(w) = %G(w) (6 (w — 20007) + 6(w + 20007))

= %(G(w —20007) + G(w + 20007))

- i(X(w —40007) + 2X (w) + X (w 4 40007))

(c)

By looking at the expression for Z(w) we see that b = 2 and w. = 20007 will produce the desired result.
It might be helpful to sketch the Fourier transform of Z(w) in terms of the Fourier transform of X (w)
to see what is going on in the frequency domain.

Solution 7: Sampling sinusoids

(a) A sampling system samples continuous-time signals with frequency ws; = 10007 . According to the
sampling theorem, which of the following signals could be reconstructed exactly if sampled by this system:

i. x(t) = cos200mt, . x(t) =sindb0nt, . x(t) =sin25007t, . z(t) = cos 2007t + sin 8007t .

(b) A sampling system samples continuous-time signals with sampling interval 7' = 0.5x 1073 . According
to the sampling theorem, which of the following signals could be reconstructed exactly if sampled by this
system:

i. x(t) = cos10007t, di. z(t) =sin25007t, 4@ x(t) = cos 5007t + sin 3007t, iv. x(t) = sin 15007t .

Solution:

(a) We know that one way which is sufficient to reconstruct the original signal is to choose wy > 2wy,
(the frequency such that X(w) = 0 for |w| > wyr) and apply a low pass filter with cut-off frequency
wys - Respectively for:

i. x(t) = cos2007t, X (w) = md(w — 2007) + wd(w + 2007) . So wpr = 2007 and ws > 2wy, thus YES
we can reconstruct it exactly.

i. x(t) = sin450mt, X(w) = 56(w —450m) — F6(w +4507) . So wpr = 4507 and ws > 2wy, thus YES
we can reconstruct it exactly.

iii. x(t) = sin 25007t , wpy = 25007 and ws < 2wy, thus NO we cannot reconstruct it.

w. x(t) = cos200mt + sin 8007t , X (w) = mé(w — 2007) + w6 (w + 200m) + F6(w — 8007) — F6(w + 8007)



So wpr = max{200m, 8007} = 8007 and ws < 2wyy , thus NO we cannot reconstruct it.

(b) The sampling frequency is ws = 28 = 40007 . Then, it becomes similar to part (a).

i. x(t) = cos 10007t , wpr = 10007 and ws > 2wy, thus YES we can reconstruct it exactly.
it. x(t) = cos 25007t wyr = 25007 and ws < 2wy, thus NO we cannot reconstruct it.
iii. x(t) = cos 5007t + sin 3007t , wyr = 5007 and ws > 2wys, thus YES we can reconstruct it exactly.

w. x(t) = sin 15007t , wyy = 15007 and ws > 2wy, thus YES we can reconstruct it exactly.

Solution 8: Sampling sinusoids - Part 2

A mystery signal x(t) is sampled with frequency w, = 10007 using impulse-train sampling, and then
reconstructed with a low-pass filter with cut-off frequency w. = 5007 . The reconstructed signal is

z,(t) = cos 2007t.

We do not know anything else about x(t). Which of the following signals could be xz(t)?
i. z(t) = cos 3007t it. x(t) = cos200nt, iii. x(t) = cos 12007t iv. x(t) = cos 8007t .

Make sure to justify your answers for full credit.

Solution:

(a) From equation (5.23) in the lecture notes we have
Ws
Xp(w) = 5= > X(w— kw,). (3)
k=—o0

and from equation (5.34) in the lecture notes we have
Xp(w) = Xp(w)H(w). (4)

i. If 2(t) = cos(3007t), then ws > 2wy, then there is no aliasing and after the low pass filter we get
2y (t) = cos(300mt) # cos(2007t) .

ii. If x(t) = cos(2007t), then wy > 2wy, then there is no aliasing and after the low pass filter we get
2, (t) = cos(2007t) .

i, If 2(t) = cos(12007t), then ws < 2wps, then there is aliasing so the sampling theorem do not apply.
After we apply (3) and (4) we get x,(t) = cos(2007t), check the figure below.

iv. If x(t) = cos(8007t), then ws < 2wys, then there is aliasing so the sampling theorem do not apply.
After we apply (3) and (4) we get z,(t) = cos(2007t), it has a similar figure as part #ii.

Solution 9: Nyquist rate

Let z(t) be a signal with Nyquist rate wp. Determine the Nyquist rate for each of the following signals:
(a) x(t) —x(t—1)
(b) =(t)z(t —1)



1 1
2
—6 - 5007 —4 - 5007 /Z\2 - 5007 2 500,;\ 4 50071' 6 - 5007
—12007 12007
Xp(w)
107 T
—6 - 5007 —4 - 5007 /2\2 - 5007 2 500’7}\ 4 50071’ 6 - 5007
—12007 12007
H(w)
50
—6 - 5007 —4 - 5007 —2- 5007 2 - 5007 4 - 5007 6 - 5007
—500m 5007
Xr(w)
1 4
—6 - 5007 —4 - 5007 —2 5007T / \ 2 5007T 4 - 5007 6 - 5007

—200m 200w

Figure 4: For part iii. of (c).

(c) (zz)(t) where z(t) = sin ¢
Hint: A complete answer should include two possibilities.

(d) (z * z)(t) where z(t) = coswpt

10



Solution:

(a) For the sake of simplicity the alternative interpretation of “z(t) be a signal with Nyquist rate wq”
is: X(w) = 0 for |w| > %. The signal y(t) = x(t) — x(t — 1), in the frequency domain will be
Y(w) = X(w) — e 7“X(w). In other words X (w) is superposed with its own shifted copy, however

Y(w) =0 for |w|> % and the Nyquist rate remains the same, wp .

(b) The signal y(t) = z(t)z(t — 1) in the frequency domain will be Y (w) = 5= (X (w) * (e /X (w))). So
if X(w) =0 for |w| > %>, then the scaled version of the convolution with itself which is Y (w), will be
Y(w) =0 for |w| > wp. Therefore, the Nyquist rate will be 2wy .

(c) The signal y(t) = (z* z)(t) in the frequency domain will be Y (w) = X(w)Z(w). So if X(w) =0 for
lw| = %, then Y(w) = 0 and the Nyquist rate is 0. Otherwise Y (w) =0 for |w| > % . Therefore, the

. . 2
Nyquist rate will be =32 .

(d) The signal y(t) = (z * 2)(¢t) in the frequency domain will be Y (w) = X(w)Z(w). However, Z(w) =
7(0(w — wo) + 0(w 4+ wo) while X(w) =0 for |w| > %, Therefore, Y (w) = 0 the Nyquist rate will be
Z€T0.

Solution 10: A simple communications system II

Many communication systems, for example mobile phones and other wireless devices, send information
across free space using electromagnetic waves. To send these electromagnetic waves across long distances,
the frequency of the transmitted signal must be very high compared to the frequency of the information
signal. An essential technique in designing such communication systems is called modulation. During
modulation an information signal to be transmitted is embedded, or modulated, onto a higher frequency
waveform called carrier. In this problem we analyze a simple communication system that uses the principle
of modulation.

Let z(t) be a real-valued signal for which X (w) =0 when |w| > 20007 . In order to communicate z(t)
over free space modulation is performed to produce the transmitted signal g(¢), where

g(t) = x(t) cos 20007t.

(a) Find the Fourier transform, G(w), of the transmitted signal g(t).

Once the signal g(t) is received, it needs to be processed (demodulated) to recover z(t). A proposed
demodulation system is illustrated in Figure 5 where H is an ideal low pass filter with a frequency
response given by

_Jb Wl <we
H(w) = {O, elswehere.

(b) Find the Fourier transform, Z(w), of the input to the low pass filter z(t).
(c¢) Find the gain b and the cut-off frequency w. such that y(t) = x(t).

9(t) ~ =) 1 v@)

\T/ L7t ]

cos(20007t)

Figure 5: Proposed demodulation system.

Solution: (a)

11



Applying the convolution in frequency property from Appendix 4.A and the Fourier transform pair for
cosine form Appendix 4.B we obtain

G(w) = —= X (w) % 7(5(w — 20007) + 5(w + 20007))

21
1
= i(X(w —20007) + X (w + 20007)).

(b)
Again, applying the convolution in frequency property from Appendix 4.A and the Fourier transform
pair for cosine form Appendix 4.B we obtain

Z(w) = 271_G( w) * 7(6(w — 20007) + 6(w + 20007))
- %(G(w — 20007) + G/(w + 20007))

- i(X(w —40007) + 2X (w) + X (w 4 40007))

(c)
By looking at the expression for Z(w) we see that b = 2 and w,. = 20007 will produce the desired result.

It might be helpful to sketch the Fourier transform of Z(w) in terms of the Fourier transform of X (w)
to see what is going on in the frequency domain.

Solution 11: Impulse-Train sampling
Let x(t) be a signal with Nyquist rate wo and let z,(t) = x(¢)p(t — 1), where

E o(t —nT), andT< —
wo
n=—oo

Specify the constraints on the frequency response of a filter that gives z(¢) as its output when z,(t) is
the input.

Solution:

From Appendix 4.B, the Fourier transform of p(t) is

i (5w—kz—

k=—o0

From Appendix 4.A the Fourier transform of ¢(¢) = p(t — 1) is

oo

_—Jw — k:27r
QW) =e*Pw T k_% O(w—k—)e 7¥T.
Since z,(t) = x(t)p(t — 1) we have
1 Z e
Xp(&)) = %(X Q k__ X w — R— ey .

12



Therefore, X,(w) consists of replicas of X (w) shifted by k2% and added to each other. In order to
recover x(t) from wx,(t), we need to isolate one replica of X (w) from X,(w) (the one corresponding to
the k =0 shift). This is accomplished if we multiply X, (w) by

T, |w| < we
H(w) = { 0 otherwise

wo 27 _ wo
where % < w, < 77 3 -
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