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Solution Set 3

Solution 1: Hard and Easy

(a) A discrete-time sequence x[n] is given as

x[n] = x1[n]− x1[n+ 3]

where

x1[n] =

(
1

2

)n

u[n]

Find X(ejw) .

(b) Compute the value of
∫ +π

−π
X(ejw)dw .

Hint: you could do it the hard way, or the easy way. We recommend finding the easy way!

Solution: (a) By applying the linearity and shift in time properties, we obtain

X(ejw) = X1(e
jw)− e3jωX1(e

jw).

Since

X1(e
jw) =

1

1− 1
2e

−jω

we have that

X(ejw) =
1− e3jω

1− 1
2e

−jω

(b) We have that,

x[n] =
1

2π

∫ π

−π

X(ejω)ejωndω.

We substitute n = 0 ,

x[0] =
1

2π

∫ π

−π

X(ejω)dω

Thus, ∫ π

−π

X(ejω)dω = 2πx[0] =
14π

8
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Solution 2: Frequency response

(a) Consider a continuous-time LTI system with frequency response H(ω) and real and even impulse
response h(t) (that is, h(t) = h(−t)) . Suppose that we apply an input x(t) = sin(ω0t) to this system.
The resulting output can be shown to be of the form

y(t) = A sin(ω0t)

where A is a real number. Find A as a function of H(ω) , and ω0 . For full credit do this without taking
a Fourier Transform of x(t) .

(b) Consider a continuous-time LTI system with frequency response H(ω) = |H(ω)|ej argH(ω) and real
impulse response h(t) . Suppose that we apply an input x(t) = cos(ω0t + ϕ0) to this system. The
resulting output can be shown to be of the form

y(t) = Ax(t− t0)

where A is a nonnegative real number representing an amplitude-scaling and t0 is a time delay. Find A
and t0 as a function of H(ω) , ω0 , and ϕ0 . For full credit do this without taking a Fourier Transform
of x(t) .

Solution:

(a) Using Euler’s formula we can write

x(t) =
1

2j

(
eω0jt − e−ω0jt

)
.

Since the impulse response is real and even, so is the frequency response: that is H(ω) = H(−ω) .

Then,

y(t) =
1

2j

(
H(ω0)e

ω0jt −H(−ω0)e
−ω0jt

)
=

1

2j

(
H(ω0)e

ω0jt −H(ω0)e
−ω0jt

)
= H(ω0)

1

2j

(
eω0jt − e−ω0jt

)
= H(ω0) sin (ω0t)

and A = H(ω0) .

(b) Using Euler’s formula we can write

x(t) =
1

2

(
eω0jt+ϕ0j + e−ω0jt−ϕ0j

)
=

1

2

(
eϕ0jeω0jt + e−ϕ0je−ω0jt

)
Since the impulse response is real, the frequency response satisfies H(ω) = H∗(−ω) . Then,

y(t) =
1

2

(
H(ω0)e

ϕ0jeω0jt +H(−ω0)e
−ϕ0je−ω0jt

)
=

1

2

(
H(ω0)e

ϕ0jeω0jt +H∗(ω0)e
−ϕ0je−ω0jt

)
= |H(ω0)|

1

2

(
eϕ0j+argH(ω0)jeω0jt + e−ϕ0j−argH(ω0)je−ω0jt

)
= |H(ω0)| cos (ω0t+ argH(ω0) + ϕ0)
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and so A = |H(ω0)| and t0 = − argH(ω0)
ω0

.

Solution 3: Ideal filters

(a) A continuous-time ideal low-pass filter has a frequency response

H(ω) =

{
1, |ω| ≤ π

5

0, otherwise

Find the output when the filter is applied to each of the following inputs

x(t) = cos
π

3
t, x(t) = 1, x(t) = sinc

(
t

6

)
, x(t) = sinc

(
t

4

)
. (1)

(b) A discrete-time ideal low-pass filter has a frequency response

H(ejω) =

{
1, |ω| ≤ π

5

0, otherwise

on the interval −π < ω ≤ π . Find the output when the filter is applied to each of the following inputs

x[n] = cos
13π

6
n, x[n] = (−1)n, x[n] = δ[n]. (2)

Solution:

(a)

Taking the Fourier Transform of x(t) = cos π
3 t we note that X(ω) is two delta pulses at ω = π

3 and
ω = −π

3 . Then H(ω)X(ω) = 0 and so y(t) = 0 .

Taking the Fourier Transform of x(t) = 1 we note that X(ω) is a delta pulse at ω = 0 . Then
H(ω)X(ω) = X(ω) and so y(t) = 1 for all t .

From Appendix 4.B we see that the Fourier Transform of x(t) = sinc
(
t
6

)
is non-zero only for |ω| ≤ π

6 .

Then H(ω)X(ω) = X(ω) and so y(t) = sinc
(
t
6

)
.

From Appendix 4.B we see that the Fourier Transform of x(t) = sinc
(
t
4

)
is itself a low-pass filter with

gain 4 .That is

X(ω) =

{
4, |ω| ≤ π

4

0, otherwise

Then

Y (ω) = H(ω)X(ω) =

{
4, |ω| ≤ π

5

0, otherwise

Taking the inverse Fourier Transform gives y(t) = 4
5 sinc

(
t
5

)
.

(b)
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Note that x[n] = cos 13π
6 n = cos π

6n . Taking the Fourier Transform of x[n] again produces two delta
pulses at ω = π

6 and ω = −π
6 on the interval −π < ω ≤ π . Then H(ejω)X(ejω) = X(ejω) and so

y(t) = cos π
6n .

Note again that x[n] = (−1)n = ejπn . Taking the Fourier Transform of x[n] again produces a pulse at
ω = π on the interval −π < ω ≤ π . Then H(ejω)X(ejω) = 0 and so y(t) = 0 .

The Fourier Transform of x[n] = δ[n] is X(ejω) = 1 . Then Y (ejω) = H(ejω)X(ejω) = H(ejω) . Taking
the inverse transform yields y[n] = 1

5 sinc(
n
5 )

Solution 4: Composition of systems

x(t) y(t)

System H System H

Figure 1: A composed system.

In this problem, we study the system composition illustrated in Figure 1 with input x(t) and output
y(t), where we assume that the system H is known to be LTI and stable.

(a) Prove that the composed system shown in the figure is stable.

(b) Give the frequency response of the overall system in Figure 1 with input x(t) and output y(t) in
terms of the frequency response H(ω) of the component system H.

(c) For the special case where the system H is the LTI system with impulse response h(t) = e−|t|, give an
explicit formula for the frequency response of the overall system (expressed as a ratio of two polynomials
in ω ).

Solution

(a)

x(t) y(t)

u(t)

v(t)

w(t)
System H System H

Figure 2: Labeled figure

Assume that |x(t)| < B for all t and B < ∞ . Then |u(t)| < C because the system is stable thus,

|v(t)| = |u(t) + x(t)|
≤ |u(t)|+ |x(t)| < B + C

the signal v(t) is bounded. Also |w(t)| < D because the system H is stable so

|y(t)| = |w(t) + v(t)|
≤ |w(t)|+ |v(t)| < B + C +D.
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(b) From the figure above we can write the output in terms of input as follows

y(t) = v(t) + (v ∗ h)(t)

and the frequency domain we have Y (ω) = (1 +H(ω))V (ω) . Similarly, V (ω) = (1 +H(ω))X(ω) , thus
the overall frequency response is (1 +H(ω))2 .

(c) The frequency response of system H is

H(ω) =

∫ ∞

−∞
e−|t|e−jωtdt =

∫ 0

−∞
e(1−jω)tdt+

∫ ∞

0

e−(1+jω)tdt =
1

1 + jω
+

1

1− jω
=

2

1 + ω2
.

The overall frequency response will be

(1 +
2

1 + ω2
)2 =

9 + ω4 + 6ω2

1 + ω4 + 2ω2
.
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Solution 5: Step response (Review)

During the course we have seen as the impulse response completely characterizes an LTI system. Un-
fortunately, it is rather difficult to produce an infinite amplitude pulse with infinitesimal duration in
practice. In this problem we define another type of response called the step response which is often used
to characterize an LTI system. It is defined, in continuous time, as:

s(t) = u(t) ∗ h(t)

That is, s(t) characterizes how an LTI system reacts to the signal u(t) .

(a) An LTI system is known to have an impulse response

h(t) = e−αtu(t− t0)

where α, t0 > 0 . Find its step response.

(b) Use the convolution integral to show

h(t) =
ds(t)

dt
= s′(t).

(c) Recall that input-output relationship of a stable LTI system could be related by the equation

Y (ω) = H(ω)X(ω)

where Y (ω) is the Fourier transform for the output signal y(t) , Xω) is the Fourier transform for the
input signal x(t) , and H(ω) is the Fourier transform for the impulse response h(t) .

Assume that the Fourier Transform of s(t) of an LTI system exists. Find the same input-output rela-
tionship in the frequency domain in terms of S(ω) . That is, you need to derive the formula that relates
X(ω) to Y (ω) in terms of S(ω) .

Solution:

(a)

s(t) = u(t) ∗ h(t)

=

∫ ∞

−∞
h(τ)u(t− τ)dτ

=

∫ t

−∞
h(τ)dτ

=

∫ t

−∞
e−ατu(τ − t0)dτ

=

∫ t

t0

e−ατdτ

If t < t0 then s(t) = 0 . Otherwise

s(t) = − 1

α

(
e−αt − e−αt0

)
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and the final answer is

s(t) =
1

α

(
e−αt0 − e−αt

)
u(t− t0).

(b) Writing out the convolution integral

s(t) = u(t) ∗ h(t)

=

∫ ∞

−∞
h(τ)u(t− τ)dτ

then

ds(t)

dt
=

d

dt

∫ t

−∞
h(τ)dτ

= h(t)

where the last line follow from the fundamental theorem of calculus.

(c) From part (b) we have that h(t) = ds(t)
dt and using differentiation in time property of Fourier

Transform gives H(ω) = jωS(ω) . Combining this with the equation Y (ω) = H(ω)X(ω) yields Y (ω) =
jωS(ω)X(ω) .

Solution 6: A simple communication system

Many communication systems, for example mobile phones and other wireless devices, send information
across free space using electromagnetic waves. To send these electromagnetic waves across long distances,
the frequency of the transmitted signal must be very high compared to the frequency of the information
signal. An essential technique in designing such communication systems is called modulation. During
modulation an information signal to be transmitted is embedded, or modulated, onto a higher frequency
waveform called carrier. In this problem we analyze a simple communication system that uses the principle
of modulation.

Let x(t) be a real-valued signal for which X(ω) = 0 when |ω| ≥ 2000π . In order to communicate x(t)
over free space modulation is performed to produce the transmitted signal g(t) , where

g(t) = x(t) cos 2000πt.

(a) Find the Fourier transform, G(ω) , of the transmitted signal g(t) .

Once the signal g(t) is received, it needs to be processed (demodulated) to recover x(t) . A proposed
demodulation system is illustrated in Figure 5 where H is an ideal low pass filter with a frequency
response given by

H(ω) =

{
b, |ω| ≤ ωc

0, elswehere.

(b) Find the Fourier transform, Z(ω) , of the input to the low pass filter z(t) .

(c) Find the gain b and the cut-off frequency ωc such that y(t) = x(t) .

Solution: (a)

Applying the convolution in frequency property from Appendix 4.A and the Fourier transform pair for
cosine form Appendix 4.B we obtain

G(ω) =
1

2π
X(ω) ∗ π(δ(ω − 2000π) + δ(ω + 2000π))

=
1

2
(X(ω − 2000π) +X(ω + 2000π)).
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Figure 3: Proposed demodulation system.

(b)

Again, applying the convolution in frequency property from Appendix 4.A and the Fourier transform
pair for cosine form Appendix 4.B we obtain

Z(ω) =
1

2π
G(ω) ∗ π(δ(ω − 2000π) + δ(ω + 2000π))

=
1

2
(G(ω − 2000π) +G(ω + 2000π))

=
1

4
(X(ω − 4000π) + 2X(ω) +X(ω + 4000π))

(c)

By looking at the expression for Z(ω) we see that b = 2 and ωc = 2000π will produce the desired result.
It might be helpful to sketch the Fourier transform of Z(ω) in terms of the Fourier transform of X(ω)
to see what is going on in the frequency domain.

Solution 7: Sampling sinusoids

(a) A sampling system samples continuous-time signals with frequency ωs = 1000π . According to the
sampling theorem, which of the following signals could be reconstructed exactly if sampled by this system:

i. x(t) = cos 200πt , ii. x(t) = sin 450πt , iii. x(t) = sin 2500πt , iv. x(t) = cos 200πt+ sin 800πt .

(b) A sampling system samples continuous-time signals with sampling interval T = 0.5×10−3 . According
to the sampling theorem, which of the following signals could be reconstructed exactly if sampled by this
system:

i. x(t) = cos 1000πt , ii. x(t) = sin 2500πt , iii. x(t) = cos 500πt+ sin 300πt , iv. x(t) = sin 1500πt .

Solution:

(a) We know that one way which is sufficient to reconstruct the original signal is to choose ωs > 2ωM

(the frequency such that X(ω) = 0 for |ω| > ωM ) and apply a low pass filter with cut-off frequency
ωM . Respectively for:

i. x(t) = cos 200πt , X(ω) = πδ(ω − 200π) + πδ(ω + 200π) . So ωM = 200π and ωs > 2ωM , thus YES
we can reconstruct it exactly.

ii. x(t) = sin 450πt , X(ω) = π
j δ(ω − 450π)− π

j δ(ω + 450π) . So ωM = 450π and ωs > 2ωM , thus YES
we can reconstruct it exactly.

iii. x(t) = sin 2500πt , ωM = 2500π and ωs < 2ωM , thus NO we cannot reconstruct it.

iv. x(t) = cos 200πt+ sin 800πt , X(ω) = πδ(ω − 200π) + πδ(ω + 200π) + π
j δ(ω − 800π)− π

j δ(ω + 800π)
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So ωM = max{200π, 800π} = 800π and ωs < 2ωM , thus NO we cannot reconstruct it.

(b) The sampling frequency is ωs =
2π
T = 4000π . Then, it becomes similar to part (a) .

i. x(t) = cos 1000πt , ωM = 1000π and ωs > 2ωM , thus YES we can reconstruct it exactly.

ii. x(t) = cos 2500πt , ωM = 2500π and ωs < 2ωM , thus NO we cannot reconstruct it.

iii. x(t) = cos 500πt+ sin 300πt , ωM = 500π and ωs > 2ωM , thus YES we can reconstruct it exactly.

iv. x(t) = sin 1500πt , ωM = 1500π and ωs > 2ωM , thus YES we can reconstruct it exactly.

Solution 8: Sampling sinusoids - Part 2

A mystery signal x(t) is sampled with frequency ωs = 1000π using impulse-train sampling, and then
reconstructed with a low-pass filter with cut-off frequency ωc = 500π . The reconstructed signal is

xr(t) = cos 200πt.

We do not know anything else about x(t) . Which of the following signals could be x(t) ?

i. x(t) = cos 300πt , ii. x(t) = cos 200πt , iii. x(t) = cos 1200πt , iv. x(t) = cos 800πt .

Make sure to justify your answers for full credit.

Solution:

(a) From equation (5.23) in the lecture notes we have

Xp(ω) =
ωs

2π

∞∑
k=−∞

X(ω − kωs). (3)

and from equation (5.34) in the lecture notes we have

Xr(ω) = Xp(ω)H(ω). (4)

i. If x(t) = cos(300πt) , then ωs > 2ωM , then there is no aliasing and after the low pass filter we get
xr(t) = cos(300πt) ̸= cos(200πt) .

ii. If x(t) = cos(200πt) , then ωs > 2ωM , then there is no aliasing and after the low pass filter we get
xr(t) = cos(200πt) .

iii. If x(t) = cos(1200πt) , then ωs < 2ωM , then there is aliasing so the sampling theorem do not apply.
After we apply (3) and (4) we get xr(t) = cos(200πt) , check the figure below.

iv. If x(t) = cos(800πt) , then ωs < 2ωM , then there is aliasing so the sampling theorem do not apply.
After we apply (3) and (4) we get xr(t) = cos(200πt) , it has a similar figure as part iii .

Solution 9: Nyquist rate

Let x(t) be a signal with Nyquist rate ω0 . Determine the Nyquist rate for each of the following signals:

(a) x(t)− x(t− 1)

(b) x(t)x(t− 1)
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ω

X(ω)

−6 · 500π −4 · 500π −2 · 500π 2 · 500π 4 · 500π 6 · 500π

1
2

−1200π 1200π

ω

Xp(ω)

−6 · 500π −4 · 500π −2 · 500π 2 · 500π 4 · 500π 6 · 500π

10−3

−1200π 1200π

ω

H(ω)

−6 · 500π −4 · 500π −2 · 500π 2 · 500π 4 · 500π 6 · 500π

500

−500π 500π

ω

Xr(ω)

−6 · 500π −4 · 500π −2 · 500π 2 · 500π 4 · 500π 6 · 500π

1
2

−200π 200π

Figure 4: For part iii. of (c) .

(c) (x ∗ z)(t) where z(t) = sin ω0

3 t
Hint: A complete answer should include two possibilities.

(d) (x ∗ z)(t) where z(t) = cosω0t
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Solution:

(a) For the sake of simplicity the alternative interpretation of “x(t) be a signal with Nyquist rate ω0 ”
is: X(ω) = 0 for |ω| > ω0

2 . The signal y(t) = x(t) − x(t − 1) , in the frequency domain will be
Y (ω) = X(ω) − e−jωX(ω) . In other words X(ω) is superposed with its own shifted copy, however
Y (ω) = 0 for |ω| > ω0

2 and the Nyquist rate remains the same, ω0 .

(b) The signal y(t) = x(t)x(t− 1) in the frequency domain will be Y (ω) = 1
2π (X(ω) ∗ (e−jωX(ω))) . So

if X(ω) = 0 for |ω| > ω0

2 , then the scaled version of the convolution with itself which is Y (ω) , will be
Y (ω) = 0 for |ω| > ω0 . Therefore, the Nyquist rate will be 2ω0 .

(c) The signal y(t) = (x ∗ z)(t) in the frequency domain will be Y (ω) = X(ω)Z(ω) . So if X(ω) = 0 for
|ω| = ω0

3 , then Y (ω) = 0 and the Nyquist rate is 0 . Otherwise Y (ω) = 0 for |ω| > ω0

3 . Therefore, the

Nyquist rate will be 2ω0

3 .

(d) The signal y(t) = (x ∗ z)(t) in the frequency domain will be Y (ω) = X(ω)Z(ω) . However, Z(ω) =
π(δ(ω − ω0) + δ(ω + ω0) while X(ω) = 0 for |ω| > ω0

2 , Therefore, Y (ω) = 0 the Nyquist rate will be
zero.

Solution 10: A simple communications system II

Many communication systems, for example mobile phones and other wireless devices, send information
across free space using electromagnetic waves. To send these electromagnetic waves across long distances,
the frequency of the transmitted signal must be very high compared to the frequency of the information
signal. An essential technique in designing such communication systems is called modulation. During
modulation an information signal to be transmitted is embedded, or modulated, onto a higher frequency
waveform called carrier. In this problem we analyze a simple communication system that uses the principle
of modulation.

Let x(t) be a real-valued signal for which X(ω) = 0 when |ω| ≥ 2000π . In order to communicate x(t)
over free space modulation is performed to produce the transmitted signal g(t) , where

g(t) = x(t) cos 2000πt.

(a) Find the Fourier transform, G(ω) , of the transmitted signal g(t) .

Once the signal g(t) is received, it needs to be processed (demodulated) to recover x(t) . A proposed
demodulation system is illustrated in Figure 5 where H is an ideal low pass filter with a frequency
response given by

H(ω) =

{
b, |ω| ≤ ωc

0, elswehere.

(b) Find the Fourier transform, Z(ω) , of the input to the low pass filter z(t) .

(c) Find the gain b and the cut-off frequency ωc such that y(t) = x(t) .

Figure 5: Proposed demodulation system.

Solution: (a)
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Applying the convolution in frequency property from Appendix 4.A and the Fourier transform pair for
cosine form Appendix 4.B we obtain

G(ω) =
1

2π
X(ω) ∗ π(δ(ω − 2000π) + δ(ω + 2000π))

=
1

2
(X(ω − 2000π) +X(ω + 2000π)).

(b)

Again, applying the convolution in frequency property from Appendix 4.A and the Fourier transform
pair for cosine form Appendix 4.B we obtain

Z(ω) =
1

2π
G(ω) ∗ π(δ(ω − 2000π) + δ(ω + 2000π))

=
1

2
(G(ω − 2000π) +G(ω + 2000π))

=
1

4
(X(ω − 4000π) + 2X(ω) +X(ω + 4000π))

(c)

By looking at the expression for Z(ω) we see that b = 2 and ωc = 2000π will produce the desired result.
It might be helpful to sketch the Fourier transform of Z(ω) in terms of the Fourier transform of X(ω)
to see what is going on in the frequency domain.

Solution 11: Impulse-Train sampling

Let x(t) be a signal with Nyquist rate ω0 and let xp(t) = x(t)p(t− 1) , where

p(t) =

∞∑
n=−∞

δ(t− nT ), and T <
2π

ω0

Specify the constraints on the frequency response of a filter that gives x(t) as its output when xp(t) is
the input.

Solution:

From Appendix 4.B, the Fourier transform of p(t) is

P (ω) =
2π

T

∞∑
k=−∞

δ(ω − k
2π

T
).

From Appendix 4.A the Fourier transform of q(t) = p(t− 1) is

Q(ω) = e−jωP (ω) =
2π

T

∞∑
k=−∞

δ(ω − k
2π

T
)e−jk 2π

T .

Since xp(t) = x(t)p(t− 1) we have

Xp(ω) =
1

2π
(X ∗Q)(ω) =

1

T

∞∑
k=−∞

X(ω − k
2π

T
)e−jk 2π

T .
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Therefore, Xp(ω) consists of replicas of X(ω) shifted by k 2π
T and added to each other. In order to

recover x(t) from xp(t) , we need to isolate one replica of X(ω) from Xp(ω) (the one corresponding to
the k = 0 shift). This is accomplished if we multiply Xp(ω) by

H(ω) =

{
T, |ω| ≤ ωc

0 otherwise

where ω0

2 < ωc <
2π
T − ω0

2 .
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