
Differential Geometry II - Smooth Manifolds
Winter Term 2024/2025

Lecturer: Dr. N. Tsakanikas
Assistant: L. E. Rösler

Exercise Sheet 1 – Solutions

Exercise 1: Show that if a topological spaceM is locally Euclidean at some point p ∈M
(i.e., p has a neighborhood that is homeomorphic to an open subset of Rn), then p has a
neighborhood that is homeomorphic to the whole space Rn or to an open ball in Rn.

Solution: We know that there is an open neighborhood U of p and a homeomorphism
φ from U to an open subset φ(U) of Rn. We can find a ball B

(
φ(p), r

)
⊆ φ(U) ⊆ Rn for

some r > 0. Consider now the map ψ : B
(
φ(p), r

)
→ Rn given by

ψ(x) :=
x− φ(p)

r − ∥x− φ(p)∥
.

One can easily verify that ψ is a homeomorphism with inverse

ψ−1(y) = φ(p) +
y

1 + ∥y∥
.

Set U ′ := φ−1
(
B
(
φ(p), r

))
⊆M and observe that U ′ is a neighborhood of p in M . Then

the map
θ := ψ ◦ φ|U ′ : U ′ → Rn

is a homeomorphism, as both ψ and φ are homeomorphisms.

Exercise 2: Examine which of the following spaces (endowed with the subspace topology)
is locally Euclidean:

(a) The closed interval [0, 1] ⊆ R.

(b) The “bent line”
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, xy = 0

}
⊆ R2.

Solution:

(a) The interval [0, 1] is not locally Euclidean. Suppose by contradiction that it is locally
Euclidean. By Exercise 1 there is a neighborhood U ⊆ [0, 1] of 0 which is homeomorphic
to Rn for some n ≥ 1. Denote by φ : U → Rn a homeomorphism and note that U is
connected, and thus of the form U = [0, ε) for some ε > 0. But then U \ {0} = (0, ε)
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is homeomorphic to Rn \ {φ(0)}, and since (0, ε) is still connected, we infer that n > 1
(R minus a point has two connected components). Now there are two ways to conclude:
First, note that (0, ε) and Rn \ {φ(0)} are topological manifolds of dimension 1 and n,
respectively, and since the dimension of a topological manifold is a topological invariant,
we obtain n = 1, a contradiction. Second, if x ∈ (0, ε), then (0, ε)\{x} is homeomorphic to
Rn\{φ(0), φ(x)}; as n > 1, the latter is connected, while the former is not, a contradiction.

(b) The “bent line”

L :=
{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, xy = 0

}
is locally Euclidean. Indeed, denote by φ : R2 → R2 the counterclockwise rotation around
the origin by 45◦. As this is a homeomorphism, we obtain that L ∼= φ(L). But now note
that φ(L) coincides with the graph of the absolute value function | • | : R → R. Thus, we
obtain L ∼= φ(L) ∼= R.

Exercise 3:

(a) The line with two origins : Consider the set

X =
{
(x, y) ∈ R2 | y ∈ {−1, 1}

}
⊆ R2

and let M be the quotient of X by the equivalence relation generated by (x,−1) ∼
(x, 1) for all x ̸= 0. Show that M is locally Euclidean and second-countable, but not
Hausdorff.

(b) Show that a disjoint union of uncountably many copies of R is locally Euclidean and
Hausdorff, but not second-countable.

Solution:

(a) Denote by π : X → M the quotient map (x, y) 7→ [(x, y)]. The two “origins” are
the equivalence classes of the points (0, y) ∈ X for y = ±1; these classes have just
one element each and we denote them by 0y = [(0, y)] = {(0, y)} ∈ M . In contrast,
the equivalence class of any other point (x, y) ∈ X with x ̸= 0 is the two-point set
x̃ = [(x, y)] = {(x, 1), (x,−1)} ∈M . Therefore, M is the set of equivalence classes

M = X/ ∼= {01} ∪ {0−1} ∪ {x̃}x ̸=0.

The space M is locally Euclidean of dimension 1 because it is the union of two open
sets

Ry =
{
[(x, y)] ∈M | x ∈ R

}
(for y = ±1),

each of which is homeomorphic to R via the map

φy : R → Ry

x 7→ [(x, y)].

To see that the sets Ry are open in the quotient topology, note that

π−1(Ry) = X \
{
(0,−y)

}
,
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which is open in X.
Moreover,M is second-countable because it is the union of two second-countable open

subsets, namely, the sets Ry
∼= R (for y = ±1).

Finally, M is not Hausdorff: let U−1 be any open set containing 0−1 and let U1 be any
open set containing 01. For y ∈ {−1, 1}, as π−1(Uy) is an open subset of X containing
(0, y), it contains a set of the form Vy = (−εy, εy) × {y} for some εy > 0. Now let x be
a real number such that 0 < x < min{ε−1, ε1}. Then [(x,−1)] = [(x, 1)] is contained in
both U−1 and U1. Hence, 0−1 and 01 cannot be separated by disjoint open neighborhoods.

(b) Let I be an uncountable index set. For every i ∈ I denote by Ri a copy of the real
numbers R equipped with the Euclidean topology, and let

X :=
⊔
i∈I

Ri

be their disjoint union. Recall that there is a natural topology on X, defined as follows:
For every i, denote by fi : Ri → X the natural set-theoretic inclusion. Then

τ :=
{
U ⊆ X | ∀i ∈ I : f−1

i (U) open in Ri

}
is a topology on X; in fact, it is the finest (i.e. maximal) topology on X such that all the
maps fi are continuous.

To see that (X, τ) is Hausdorff, let x, y ∈ X be arbitrary. Let i, j ∈ I be such that
x ∈ fi(Ri) and y ∈ fj(Rj). If i ̸= j, then fi(Ri) and fj(Rj) are disjoint open neighborhoods
of x and y, respectively (check this!). If i = j, then since Ri is Hausdorff, we can find
disjoint open neighborhoods U, V ⊆ Ri separating (the preimages of) x and y in Ri. Then
fi(U) and fi(V ) are disjoint open neighborhoods of x and y, respectively, inside X (again,
check this!). As x, y ∈ X were arbitrary, we conclude that X is Hausdorff.

Next, to check that X is locally Euclidean, let x ∈ X be arbitrary. Let i ∈ I be such
that x ∈ fi(Ri). Then fi(Ri) ∼= R is a Euclidean open neighborhood of x inside X.

Finally, suppose by contradiction that X is second-countable, i.e. there exists a count-
able basis B for its topology τ . Note that, for every i ∈ I, the set fi(Ri) is open in X,
and thus there exists ∅ ̸= Ui ∈ B such that Ui ⊆ fi(Ri). But then we must have Ui ̸= Uj

for all i ̸= j, and thus the map
I → B, i 7→ Ui

is an injection. However, since I is uncountable, this contradicts our hypothesis that B
is countable.

Exercise 4: Consider the subset

V =
{
(x, y) ∈ R2 | (x− 1)(x− y) = 0

}
⊆ R2

endowed with the subspace topology. Show that V is not a topological manifold.

Solution: The subset V ⊆ R2 and a disc with small radius and centered at the point
(1, 1) ∈ R2 (which is the point of intersection of the lines y = x and x = 1) have been
plotted below.
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Since V is a subspace of R2, it is Hausdorff and second-countable. By considering
any point p ∈ V \ {(1, 1)}, we conclude that if V were a topological manifold, then it
would necessarily have dimension 1. Assume now by contradiction that V is a topological
1-manifold. Then there exists an open neighborhood W of (1, 1) which is homeomorphic
to an open subset G of R; denote by φ this homeomorphism. For sufficiently small ε > 0,
the set U := B

(
(1, 1), ε

)
∩W (the red disc above) is an open neighborhood of (1, 1) in W ,

which is connected. Hence, its homeomorphic image I := φ(U) in G ⊆ R is connected as
well, and thus I ⊆ R is an open interval. Observe now that U \{(1, 1)} has four connected
components, whereas I \ {φ(1, 1)} has only two connected components, a contradiction.
In conclusion, V is not a topological manifold.

Exercise 5 (Product manifolds): Let M1, . . . ,Mk be topological manifolds of dimensions
n1, . . . , nk, respectively, where k ≥ 2. Show that the product space M1 × . . . ×Mk is a
topological manifold of dimension n1 + . . .+ nk.

Solution: Any finite product of Hausdorff spaces is also Hausdorff: two distinct points
of the product differ at some coordinate, where we can separate them by two disjoint
neighborhoods. Moreover, if for each 1 ≤ i ≤ k we denote by Bi a countable basis for the
topology of Mi, then

B :=
{
B1 × · · · ×Bk | ∀1 ≤ i ≤ k : Bi ∈ Bi

}
is a countable basis for the topology of the product M1 × · · · ×Mk. Finally, given any
point P = (p1, . . . , pk) ∈M1 × · · · ×Mk, by Exercise 1 we know that for every 1 ≤ i ≤ k
there exists an open neighborhood Ui ⊆ Mi of pi such that Ui

∼= Rni . Therefore, U :=
U1 × · · · × Uk is an open neighborhood of P such that U ∼= Rn1+...+nk . In conclusion,
M1 × · · · ×Mk is a topological manifold of dimension n1 + . . .+ nk.
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