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Exercise Sheet 2 – Solutions

Exercise 1: Consider the topological manifold R together with the two atlases (R, IdR)
and (R, ψ), where ψ : R → R, x 7→ x3. Show that the corresponding smooth structures
on R are different, but they are diffeomorphic to each other, i.e., there is a diffeomorphism
(R, IdR) → (R, ψ).

Solution: The union of the atlases A := {(R, IdR)} and A′ := {(R, ψ)} is not a smooth
atlas, because the transition map IdR ◦ψ−1 : y 7→ y1/3 is not differentiable at the origin.
Hence, these atlases determine different smooth structures on R.

Consider the map

F : (R,A) → (R,A′)

x 7→ x1/3.

The coordinate representation of this map is

F̂ (t) = (ψ ◦ F ◦ Id−1
R )(t) = t,

which is smooth. The coordinate representation of its inverse is

F̂−1(s) = (IdR ◦F−1 ◦ ψ−1)(s) = s,

which is smooth as well. Hence, F is a diffeomorphism.

Remark. In conclusion, we exhibited two distinct smooth structures on R, but then proved
that they are diffeomorphic. It is in fact true that any two smooth structures on R are dif-
feomorphic to each other, i.e., R admits a unique smooth structure up to diffeomorphism.
However, there are topological manifolds admitting several smooth structures which are
not diffeomorphic (google, for example, “exotic spheres”).

It might seem confusing that the new structure we introduced (that is, endowing a
topological manifold with a maximal smooth atlas) is not invariant under the natural
notion of isomorphism (i.e., diffeomorphisms). The following analogy might clarify the
situation:
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Suppose our objects of study are sets and the functions between them. One might
then be interested in endowing a set with a notion of symmetry, and so one is led to
endowing a set with a group structure. Of course, we can endow the same set with
different group structures. For example, a set with two elements {x, y} can be endowed
with a group structure where x is the neutral element, but it can also be endowed with
a group structure where y is the neutral element. From the point of view of the original
set {x, y}, these are different form each other. However, these two group structures are
isomorphic to each other from the point of view of group theory. Furthermore, similarly to
the situation in the exercise, {x, y} admits a unique group structure up to isomorphism of
groups. However, there are other sets like {x, y, z, w} which admit several non-isomorphic
group structures.

Exercise 2 (Finite-dimensional vector spaces): Let V be an R-vector space of dimension
n. Recall that any norm on V determines a topology, which is independent of the choice
of norm. Show that V has a natural smooth manifold structure as follows:

(a) Pick a basis E1, . . . , En for V and consider the map

E : Rn → V, (x1, . . . , xn) 7→
n∑

i=1

xiEi.

Show that (V,E−1) is a chart for V ; in particular, with the topology defined above,
V is thus a topological n-manifold.

(b) Given a different basis Ẽ1, . . . , Ẽn for V , show that the charts (V,E−1) and (V, Ẽ−1)
are smoothly compatible. The collection of all such charts of V defines a smooth
structure, called the standard smooth structure on V .

Solution: Denote by ∥•∥V : V → R≥0 the chosen norm on V , and by ∥•∥Rn the standard
Euclidean norm on Rn.

(a) It suffices to show that E is a homeomorphism. First, observe that E is bijective.
Now, note that the map ∥ · ∥′ : Rn → R≥0 given by ∥x∥′ := ∥E(x)∥V is a norm on Rn. As
all norms on Rn are equivalent, there exists a constant c > 1 such that

1

c
∥x∥Rn ≤ ∥x∥′ ≤ c∥x∥Rn for all x ∈ Rn.

In particular, both E and E−1 are Lipschitz-continuous, and thus E is a homeomorphism.

(b) There exists an invertible matrix A = (Aj
i )1≤i,j≤n ∈ GL(n,R) such that Ei =

∑
j A

j
i Ẽj

for each i. Thus, the transition map Ẽ−1 ◦ E is given by(
Ẽ−1 ◦ E

)
(x) = Ẽ−1

(∑
i

xiEi

)
=

∑
i

xiẼ−1(Ei) =
∑
i

xiAj
i .

Hence, the transition map is an invertible linear map, and thus a diffeomorphism (the
partial derivatives of the first order are given by constant maps corresponding to the
entries of A, and the partial derivatives of higher order vanish).
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Exercise 3: Prove the following assertions:

(a) The space M(m × n,R) of m × n matrices with real entries has a natural smooth
manifold structure.

(b) The general linear group GL(n,R) (i.e., the group of invertible n × n matrices with
real entries) has a natural smooth manifold structure.

(c) The subset Mm(m × n,R) of M(m × n,R) of matrices of rank m, where m < n has
a natural smooth manifold structure. Similarly for Mn(m× n,R) when n < m.

(d) The space L(V,W ) of R-linear maps from V to W , where V and W are two finite-
dimensional R-vector spaces, has a natural smooth manifold structure.

What is the dimension of each of the above smooth manifolds?

Solution:

(a) The set M(m × n,R) is an R-vector space of dimension mn, and thus by Exercise 2
it has a natural smooth structure, given by identifying it with Rmn. We have

dimM(m× n,R) = mn.

(b) Let det : M(n × n,R) → R be the determinant function. Note that it is continuous,
and hence GL(n,R) = det−1(R \ {0}) is an open subset of M(n × n,R). As the latter
has a natural smooth manifold structure by (a), the open subset GL(n,R) ⊆M(n×n,R)
inherits a natural smooth manifold structure as well. We have

dimGL(n,R) = n2.

(c) By linear algebra we know that an m × n-matrix with m < n has full rank if and
only if it has an invertible m ×m-submatrix. For a subset I ⊆ {1, . . . , n} of cardinality
m and a matrix A ∈M(m× n,R), denote by AI the m×m submatrix corresponding to
the columns indexed by I. Consider the map

detI : M(m× n,R) → R
A 7→ det(AI)

and observe that it is continuous. Thus,

Mm(m× n,R) =
⋃

I⊆{1,...,n}
|I|=m

det−1
I (R \ {0})

is an open subset of M(m × n,R), and hence Mm(m × n,R) inherits a natural smooth
manifold structure. We have

dimMm(m× n,R) = mn.

Finally, note that the isomorphism of vector spaces M(m × n,R) → M(n × m,R)
given by transposition preserves the rank. Therefore, Mn(m× n,R) with n < m is again
open in M(m× n,R), and hence inherits a natural smooth manifold structure.
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(d) The set L(V,W ) is naturally an R-vector space, and hence it has a natural smooth
manifold structure by Exercise 2. Indeed, fixing bases of V and W , L(V,W ) can be
naturally identified with M(m× n,R), where m = dimW and n = dimV . We have

dimL(V,W ) = dimV · dimW.

Exercise 4 (Product manifolds): Let M1, . . . ,Mk be smooth manifolds of dimensions
n1, . . . , nk, respectively, where k ≥ 2. Show that the product space M1 × . . . ×Mk is a
smooth manifold of dimension n1 + . . .+ nk by constructing a smooth manifold structure
on it.

Solution: By [Exercise Sheet 1, Exercise 5] we know that M1× . . .×Mk is a topological
manifold of dimension n1 + · · ·+ nk. As in the solution of [Exercise Sheet 1, Exercise 5],
we see that if Ai denotes the smooth structure of Mi for 1 ≤ i ≤ k, then

A :=
{
(U1 × · · · × Uk, φ1 × · · · × φk) | (U1, φ1) ∈ A1, . . . , (Uk, φk) ∈ Ak

}
is an atlas for M1 × . . .×Mk. To see that it is smooth, observe that the transition map
between two charts (U1 × · · · × Uk, φ1 × · · · × φk) and (V1 × · · · × Vk, ψ1 × · · · × ψk) of A
is given by

(ψ1 ◦ φ−1
1 )× . . .× (ψk ◦ φ−1

k ),

which is smooth, since each factor is smooth. Therefore, A is a smooth atlas, and hence
determines a smooth structure on M1 × . . .×Mk by Proposition 1.8.

Exercise 5: Consider the n-sphere Sn ⊆ Rn+1. Denote by N = (0, . . . , 0, 1) ∈ Rn+1 the
north pole and by S = −N = (0, . . . , 0,−1) the south pole of Sn. Define the stereographic
projection from the north pole N as follows:

σ : Sn \ {N} → Rn, σ(x1, . . . , xn+1) =
1

1− xn+1
(x1, . . . , xn).

Let σ̃(x) = −σ(−x) for x ∈ Sn \ {S}; it is called the stereographic projection from the
south pole.

(a) For any x ∈ Sn \ {N}, show that σ(x) = u, where (u, 0) is the point where the line
through N and x intersects the linear subspace where xn+1 = 0. Similarly, show that
σ̃(x) is the point where the line through S and x intersects the same subspace.

(b) Show that σ is bijective, and

σ−1(u1, . . . , un) =
1

|u|2 + 1
(2u1, . . . , 2un, |u|2 − 1).

(c) Verify that the atlas consisting of the two charts
(
Sn \ {N}, σ

)
and

(
Sn \ {S}, σ̃

)
is a

smooth atlas for Sn, and hence defines a smooth structure on Sn. (The coordinates
defined by σ or σ̃ are called stereographic coordinates.)
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(d) Show that the smooth structure determined by the above atlas is the same as the one
defined via graph coordinates in the lecture.

Solution: Denote by H the linear subspace of Rn+1 where xn+1 = 0, i.e.,

H =
{
(x1, . . . , xn+1) ∈ Rn+1 | xn+1 = 0

}
,

and observe that H can be identified with Rn.

(a) The line ℓ1 ⊆ Rn+1 throughN = (0, . . . , 0, 1) ∈ Rn+1 and x = (x1, . . . , xn+1) ∈ Sn\{N}
is given by the parametric equation

ℓ1 : (x
1, . . . , xn+1) + t(−x1, . . . ,−xn, 1− xn+1), t ∈ R

and intersects the hyperplane H : (xn+1 = 0) for t = − xn+1

1−xn+1 at the point (u, 0) ∈ Rn+1,
where

u =

(
x1 +

xn+1

1− xn+1
x1, . . . , xn +

xn+1

1− xn+1
xn

)
=

(
x1

1− xn+1
, . . . ,

xn

1− xn+1

)
= σ(x) ∈ Rn.

Similarly, we see that

σ̃(x) = −σ(−x) = −
(
− x1

1 + xn+1
, . . . ,− xn

1 + xn+1

)
=

(
x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
is the point where the line ℓ2 ⊆ Rn+1 through S and x intersects the hyperplane H.

(b) Pick a point u = (u1, . . . , un) ∈ Rn. The line ℓ ⊆ Rn+1 through (u, 0) ∈ Rn+1 and
N = (0, . . . , 0, 1) ∈ Rn+1 is given by the parametric equation

ℓ : (u1, . . . , un, 0) + t(−u1, . . . ,−un, 1), t ∈ R

and intersects the n-sphere Sn at points which satisfy the equation

|u|2(1− t)2 + t2 = 1,

where |u|2 =
∑n

i=1(u
i)2. It is now easy to check that the above equation has two solutions:

t = 1, which corresponds to the point N ∈ Sn, and t = |u|2−1
|u|2+1

̸= 1, which corresponds to
the point

x =

(
2u1

|u|2 + 1
, . . . ,

2un

|u|2 + 1
,
|u|2 − 1

|u|2 + 1

)
∈ Sn.

Therefore, the map

σ : Sn \ {N} → Rn, (x1, . . . , xn+1) 7→ 1

1− xn+1
(x1, . . . , xn)
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is bijective, and its inverse σ−1 : Rn → Sn \ {N} is given by the formula

(u1, . . . , un) 7→ 1

|u|2 + 1
(2u1, . . . , 2un, |u|2 − 1).

(c) It is straightforward to check that(
σ̃ ◦ σ−1

)
(u1, . . . , un) =

1

|u|2
(u1, . . . , un), (u1, . . . , un) ∈ Rn \ {(0, . . . , 0)}

and that its inverse σ ◦ σ̃−1 is also given by the same formula, namely,(
σ ◦ σ̃−1

)
(u1, . . . , un) =

1

|u|2
(u1, . . . , un), (u1, . . . , un) ∈ Rn \ {(0, . . . , 0)}.

Since both σ̃ ◦ σ−1 and σ ◦ σ̃−1 are clearly smooth, the two charts
(
Sn \ {N}, σ

)
and(

Sn \ {S}, σ̃
)
for Sn are smoothly compatible, and since their domains clearly cover Sn,

they comprise a smooth atlas for Sn, which determines a smooth structure on Sn by
Proposition 1.8 (a).

(d) According to Proposition 1.8 (b), to prove the claim, we have to check that the graph
coordinates

(
U±
i ∩ Sn, φ±

i

)
, where

φ±
i : U

±
i ∩ Sn → Bn, (x1, . . . , xn+1) 7→ (x1, . . . , x̂i, . . . xn+1)

with inverse(
φ±
i

)−1
: Bn → U±

i ∩ Sn, (u1, . . . , un) 7→
(
u1, . . . ,±

√
1− |u|2, . . . , un

)
,

and the stereographic coordinates
(
Sn\{N}, σ

)
and

(
Sn\{S}, σ̃

)
are smoothly compatible.

For instance, we have

(
φ±
i ◦ σ−1

)
(u1, . . . , un) =

(
2u1

1 + |u|2
, . . . ,

2̂ui

1 + |u|2
, . . . ,

2un

1 + |u|2
,
|u|2 − 1

1 + |u|2

)
for 1 ≤ i ≤ n, and

(
φ±
n+1 ◦ σ−1

)
(u1, . . . , un) =

(
2u1

1 + |u|2
, . . . ,

2ui

1 + |u|2
, . . . ,

2un

1 + |u|2

)
,

which are clearly smooth in their domain of definition. In a similar fashion one can readily
verify that the remaining charts are smoothly compatible; this yields the assertion.
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