Please pay attention to the presentation of your answers! (2 points)

Exercise 1 Analysis of a quantum circuit (14 points)

Consider the following quantum circuit:

a) Compute the output of the circuit when the input is an element $|x\rangle \otimes|y\rangle$ of the computational basis in $\left(\mathbb{C}^{2}\right)^{2}$.
Answer: Let us compute the output first for $x=0$ (this can also be computed more straightforwardly by observing that the CNOT gate does not act in this case and that the two H gates cancel each other):

$$
\begin{aligned}
& (I \otimes H) \operatorname{CNOT}(I \otimes H)(|0\rangle \otimes|y\rangle)=(I \otimes H) \operatorname{CNOT}\left(|0\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{y}|1\rangle\right)\right) \\
& =(I \otimes H)\left(|0\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{y}|1\rangle\right)\right)=|0\rangle \otimes \frac{1}{2}\left(|0\rangle+|1\rangle+(-1)^{y}(|0\rangle-|1\rangle)\right) \\
& =|0\rangle \otimes|y\rangle
\end{aligned}
$$

and then for $x=1$:

$$
\begin{aligned}
& (I \otimes H) \operatorname{CNOT}(I \otimes H)(|0\rangle \otimes|y\rangle)=(I \otimes H) \operatorname{CNOT}\left(|1\rangle \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{y}|1\rangle\right)\right) \\
& =(I \otimes H)\left(|1\rangle \otimes \frac{1}{\sqrt{2}}\left(|1\rangle+(-1)^{y}|0\rangle\right)\right)=|1\rangle \otimes \frac{1}{2}\left(|0\rangle-|1\rangle+(-1)^{y}(|0\rangle+|1\rangle)\right) \\
& =(-1)^{y}|1\rangle \otimes|y\rangle
\end{aligned}
$$

So overall, the output is $(-1)^{x y}|x\rangle \otimes|y\rangle$.
b) Assume now the input is in a product state $|\varphi\rangle \otimes|\psi\rangle$, where $|\varphi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$ and $|\psi\rangle=\gamma|0\rangle+\delta|1\rangle$ with $|\gamma|^{2}+|\delta|^{2}=1$. Under what condition(s) on $\alpha, \beta, \gamma, \delta$ is the output of the circuit also in a product state?

Answer: Using part a), let us compute the output:
$(I \otimes H) \operatorname{CNOT}(I \otimes H)(\alpha|0\rangle+\beta|1\rangle) \otimes(\gamma|0\rangle+\delta|1\rangle)=\alpha \gamma|00\rangle+\alpha \delta|01\rangle+\beta \gamma|10\rangle-\beta \delta|11\rangle$
As

$$
\operatorname{det}\left(\begin{array}{cc}
\alpha \gamma & \alpha \delta \\
\beta \gamma & -\beta \delta
\end{array}\right)=-\alpha \gamma \beta \delta-\beta \gamma \alpha \delta=-2 \alpha \beta \gamma \delta
$$

we conclude that the output is in a product state if and only if (at least) one of the coefficients α, β, γ or $\delta=0$.
c) And if now the input is in an entangled state, is there a possibility that the output is in a product state? If yes, provide an example; if no, explain why this is impossible.

Answer: Yes, it is possible: assume the input state is $\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle$ with $|\alpha|^{2}+|\beta|^{2}+|\gamma|^{2}+|\delta|^{2}=1$ and

$$
\operatorname{det}\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\alpha \delta-\beta \gamma \neq 0
$$

then the output state is

$$
\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle-\delta|11\rangle
$$

and

$$
\operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \\
-\gamma & -\delta
\end{array}\right)=-\alpha \delta-\beta \gamma
$$

which might be equal to 0 , even when $\alpha \delta \neq \beta \gamma$. Consider for exemple the case $\alpha=\beta=\gamma=$ $\frac{1}{2}=-\delta$. In this case, the input is in the entangled state

$$
\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle-|11\rangle)
$$

but the output is in the product state

$$
\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)=|+\rangle \otimes|+\rangle
$$

Exercise 2 Period of a function (18 points)

Let us consider the following circuit: where the 5 -qubit gate U_{f} is the oracle corresponding to the function $f:\{0,1\}^{3} \rightarrow\{0,1\}^{2}$ defined as

$$
f(x, y, z)=(x \oplus y, y \oplus z) \quad \text { for } \quad(x, y, z) \in\{0,1\}^{3}
$$

a) Compute explicitly the 5 -qubit output $|\psi\rangle$ of the circuit before the measurement.

Answer: After the first series of Hadamard gates, the state is given by

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{8}} \sum_{x, y, z \in\{0,1\}}|x, y, z, 0,0\rangle
$$

After the U_{f} gate, the state is given by

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{8}} \sum_{x, y, z \in\{0,1\}}|x, y, z, x \oplus y, y \oplus z\rangle
$$

So right before the measurement, the state is given by

$$
\left|\psi_{3}\right\rangle=\frac{1}{8} \sum_{u, v, w, x, y, z \in\{0,1\}}(-1)^{x u+y v+z w}|u, v, w, x \oplus y, y \oplus z\rangle
$$

As a reminder, the measurement is described by the collection of orthogonal projectors in the computational basis $\left\{P_{u, v, w},(u, v, w) \in\{0,1\}^{3}\right\}$, defined as

$$
P_{u, v, w}=|u, v, w\rangle\langle u, v, w| \otimes I_{2}
$$

and the output state $\left|\psi^{\prime}\right\rangle=P_{u, v, w}|\psi\rangle / \| P_{u, v, w}|\psi\rangle \|$ occurs with probability

$$
\operatorname{prob}(u, v, w)=\langle\psi| P_{u, v, w}|\psi\rangle
$$

b) Compute $\operatorname{prob}(u, v, w)$ for every $(u, v, w) \in\{0,1\}^{3}$.

Answer: The probabilities are given by

$$
\operatorname{prob}(u, v, w)=\frac{1}{64} \sum_{x, y, z, x^{\prime}, y, z^{\prime} \in\{0,1\}}(-1)^{\left(x \oplus x^{\prime}\right) u+\left(y \oplus y^{\prime}\right) v+\left(z \oplus z^{\prime}\right) w}\left\langle x^{\prime} \oplus y^{\prime}, y^{\prime} \oplus z^{\prime} \mid x \oplus y, y \oplus z\right\rangle
$$

Observing that the braket term is non-zero if and only if $x^{\prime}, y^{\prime}, z^{\prime}=x, y, z$ or $x^{\prime}, y^{\prime}, z^{\prime}=\bar{x}, \bar{y}, \bar{z}$, we obtain

$$
\begin{aligned}
\operatorname{prob}(u, v, w) & =\frac{1}{64} \sum_{x, y, z \in\{0,1\}}\left((-1)^{0}+(-1)^{u+v+w}\right) \\
& =\frac{1}{8}\left(1+(-1)^{u+v+w}\right)=\frac{1}{4} \quad \text { if and only if } \quad u+v+w \quad \text { is even }
\end{aligned}
$$

c) Deduce from there the period of the function f (that is, the value of $a \in\{0,1\}^{3} \backslash\{(0,0,0)\}$ such that $f(x \oplus a)=f(x)$ for all $\left.x \in\{0,1\}^{3}\right)$.

Answer: Let $H=\operatorname{span}((0,0,0), a)$. From part b) [and the course on Simon's algorithm], we see that the space $H^{\perp}=\{(0,0,0),(1,1,0),(1,0,1),(0,1,1)\}$, so we deduce that $a=(1,1,1)$ ($=$ the only vector such that $a \cdot x=0$ for all $x \in H^{\perp}$).

Note: You can also check directly that $a=(1,1,1)$ is the period of the function f by checking that $f(x \oplus a)=f(x)$ for all $x \in\{0,1\}^{3}$.

Exercise 3 Quantum search (18 points)

Let $f:\{0,1\}^{2} \rightarrow\{0,1\}$ be a binary function such that there exists a unique value of $\left(x_{0}, y_{0}\right) \in\{0,1\}^{2}$ with $f\left(x_{0}, y_{0}\right)=1$. Let also U_{f} be the 3 -qubit oracle gate whose action on the states in the computational basis is given by

$$
U_{f}(|x, y, z\rangle)=|x, y, z \oplus f(x, y)\rangle
$$

a) Build explicitly a circuit using gates $\mathrm{X}, \mathrm{H}, \mathrm{C}$-NOT and U_{f}, taking as input $|0,0,0\rangle$ and whose output is given by $\left|x_{0}, y_{0}\right\rangle \otimes|\psi\rangle$, where $|\psi\rangle$ is some (irrelevant) state in \mathbb{C}^{2}.

Answer: The circuit is as follows (cf. Grover's algorithm with $k=1$):

b) Build explicitly the oracle gate U_{f} in the case where $\left(x_{0}, y_{0}\right)=(0,0)$.

Note: Here, there is no restriction on the type of elementary gates which can be used.
Answer: The circuit is as follows:

c) Assume now that for the very same function f with $\left(x_{0}, y_{0}\right)=(0,0)$, we run DeutschJosza's circuit with the corresponding gate U_{f}. After the measurement of the first two qubits of the output of the circuit, what are the probabilities of each output?

Answer: The output of the Deutsch-Josza circuit for a generic function f is given by

$$
|\psi\rangle=\frac{1}{4} \sum_{x, y, u, v \in\{0,1\}}(-1)^{f(x, y)+x u+y v}|u, v\rangle \otimes|-\rangle
$$

So in our case:

$$
|\psi\rangle=\frac{1}{4} \sum_{u, v \in\{0,1\}}\left((-1)+(-1)^{u}+(-1)^{v}+(-1)^{u+v}\right)|u, v\rangle \otimes|-\rangle
$$

Therefore, $\operatorname{prob}(u, v)=\frac{1}{4}$ for every couple $(u, v) \in\{0,1\}^{2}$.

Exercise 4 Quantum error correction (18 points)

a) Two qubits in state $|\varphi\rangle=\sum_{x, y \in\{0,1\}} \alpha_{x, y}|x, y\rangle$ in $\left(\mathbb{C}^{2}\right)^{2}$, with $\sum_{x, y \in\{0,1\}}\left|\alpha_{x, y}\right|^{2}=1$, are sent through a channel and the received state is

$$
|\psi\rangle=\sum_{x, y \in\{0,1\}}(-1)^{y} \alpha_{x, y}|\bar{x}, y\rangle
$$

Propose a sequence of operations involving exclusively X and H operators allowing to recover the initial state $|\varphi\rangle$ from the received state $|\psi\rangle$, and draw the corresponding circuit.
Answer: To recover $|\varphi\rangle$ from $|\psi\rangle$, it is necessary to perform a bit-flip on x and a phase-flip on y, so

$$
|\varphi\rangle=(X \otimes H X H)|\psi\rangle
$$

which corresponds to the circuit

b) A single qubit in state $|\varphi\rangle \in \mathbb{C}^{2}$, with $\||\varphi\rangle \|=1$, is sent through a channel and the received state is

$$
|\psi\rangle=H X H X H X H X|\varphi\rangle
$$

What is the minimum number of actions needed to recover state $|\varphi\rangle$ from state $|\psi\rangle$ (up to a global phase)? Justify your answer.
Answer: Observe fist that $H X H=Z$. Indeed:

$$
H X H=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=Z
$$

So $H X H X H X H X=Z X Z X$ and $X Z X=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, so finally, we obtain

$$
H X H X H X H X=-I
$$

There is therefore no action needed in order to recover state $|\varphi\rangle$ from state $|\psi\rangle$ (up to a global phase).
c) Consider the Shor code which, as a reminder, is defined as follows:

$$
\left\{\begin{array}{l}
|0\rangle_{S}=\frac{|000\rangle+|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle+|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle+|111\rangle}{\sqrt{2}} \\
|1\rangle_{S}=\frac{|000\rangle-|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle-|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle-|111\rangle}{\sqrt{2}}
\end{array}\right.
$$

With this code, is it possible to correct both a bit-flip occuring on a given qubit and a phase-flip occuring on another qubit?

If yes, explain the detection and correction procedure in the case where the bit-flip occurs on qubit 1 and the phase-flip occurs on qubit 4.

If no, explain why this is impossible (considering the same example as above).
Answer: Yes, it is possible.
Detection procedure for a bit-flip occuring on qubit 1 and a phase-flip occuring on qubit 4:
Apply $Z_{1} Z_{2}, Z_{2} Z_{3}$, as well as $X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}, X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}$ to the received state. This will lead to eigenvalues $-1,+1$ and $-1,-1$ respectively, indicating that the bit-flip occured in position 1 and that the phase-flip occured in one of the positions 4,5,6.

Correction procedure for a bit-flip occuring on qubit 1 and a phase-flip occuring on qubit 4:
Apply X_{1} to correct the bit-flip on qubit 1 and then $Z_{4} Z_{5} Z_{6}$ to correct the phase-flip on qubit 4.

