Advanced Probability and Applications EPFL - Spring Semester 2023-2024
Final exam: solutions

Exercise 1. Quiz. (25 points) Answer each short question below. For yes/no questions explicitly
say if the statement is true of false and provide a brief justification (proof or counter-example) for
your answer. For other questions, provide the result of you computation, as well as a brief justifi-
cation for your answer.

a) Let Q@ ={1,2,...,6} and A = {{1,2,3},{1,3,5}}. Let F = 0(A) be the o-field generated by
A. What are the atoms of F?

Solution: The atoms of o(A) are {{2}, {5}, {1, 3}, {4,6}}. Indeed, you can check that each of these
sets could be obtained with unions and intersections of the following sets {0, {1, 2,3}, {1, 3,5}, Q}.
Thus, they must be in o(.4). On the other hand, any smaller sets (such as {1}, {3}, {4}, or {6})
could not be obtained in this way. And so, the smallest o-field containing A will not contain them.

b) Let Q = [0,1]2, F = B([0,1]?), and P be the probability measure on (2, F) defined as
P(Ja,b[x]c,d]) = (b—a)-(d—¢), for0<a<b<land0<c<d<1

which can be extended uniquely to all Borel sets in B([0, 1]?), according to Caratheodory’s extension

theorem. Let us now consider the following random variable defined on (2, F,P):

w1 — W2

X(UJl,UL)Q) = 9

Compute the cdf Fx of X.

Solution: First, note that the range of the random variable X is [— %, %} Thus, the CDF
Fx(t)=0fort < —% and Fx(t) =1 fort > %
Now, for t € {— %, %}, we have:

Fx(t) = px((—o0,1]) = P({(w1,wa) € [0,1]* : X (w1, wp) < t})
= ]P’({(wl,u)g) (S [0, 1]2 Twp —wy < Qt})

Note that the area {(w1,ws) € [0,1]? : wy — wa < 2t} represents different shapes in [0, 1] x [0, 1] for
positive and negative values of 2¢. Thus, we divide our analysis into two cases:

Case 1: —% <t<O0:

The area {(w1,ws) € [0,1]% : w1 — wy < 2t} represents a right-angled triangle (A;) is an element of
the sigma field F = B([0,1]?). Thus, the probability measure P(A;) is given by its area. Thus,

Fx(t) = Area(Aq) = %(1 +2t)(1 + 2t)



Case2:0<t§%:

The area {(wi,ws) € [0,1]? : w1 — wy < 2t} represents a pentagon (Az) in this case which is again
an element of the sigma field F = B([0,1]?). Thus, the probability measure P(Ay) is given by its
area which can be easily computed as:

Fx(t) = Area(Ag) = 1 — %(1 — 201 — 2t)

Thus, the CDF of the random variable X is the following:

0 if t < —3,

Fy(t) = 5(1+2t) if —2<t<0
1-1(1-2t) ifo<t<3
1 ift >3

c) Let X be a random variable supported on {0,1} with P({X = 1}) = P({X = —1}) = ;. Let
Z ~ N(0,1) and assume that X and Z are independent. Then, is (XZ,Z) a Gaussian random
vector?

Answer: No.

Consider the distribution of the random variable X Z+Z. We have that X Z+Z7 = 0 with probability
%. Thus, this is not a continuous distribution and therefore it is not a Gaussian random variable.
Recall that the sum of the components of a Guassian random vector has Gaussian distribution.
Therefore, this is not a Gaussian random vector.

Lets compute the CDF (distribution) of the random variable X Z.
P({XZ < t}) = P({XZ < tH{X = —1})B({X = —1}) + P({XZ < £}[{X = 1}) B({X = 1})
= SPUZ 2 —th) + JPUZ < 1)) = PUZ < 1)

We see here that both X and XZ are continuous random variable. However, we see that for a
diagonal line in R? (which has Lebesgue measure 0 (i.e., |A| = 0),

P({(XZ,2) € A}) =P({XZ + Z = 0}) = P{X(1 + Z) = 0}) = P({Z = —1}) = %

Thus, (XZ, Z) is a not a continuous random vector.

(See Example 6.2 and Example 6.7 from the lecture notes for details.)
d) Let X and Z be as in part (c). Then, is (X Z, Z) a continuous random vector?

Answer: No. See solution above.



e) Let X and Y be integrable random variables. If Y = ¢(X) for some measurable function
g : R — R, then is it true that E(X|Y) = h(X) for some function h : R — R?

Answer: Yes. In fact, E(X|Y) = f(Y) for some measurable function f : R — R. Hence, since
Y = g(X), we have that E(X|Y) = f(Y) = f(9(X)) = h(X) for h = f o h.

f) Let X and Y be two independent Bernoulli random variables with parameter 0 < p < 1 Let Z
be defined as
4 {1, if X +Y =0,

0, otherwise.

Are E(X|Z) and E(Y|Z) independent?
Answer: No (in general).

Yesif p = 0 or 1, no otherwise. In fact, note that E(X|Z) = f(Z) and E(Y|Z) = g(Z). Furthermore,
by symmetry of the problem, we must have f(Z) = g(Z), that is, E(X|Z) and E(Y'|Z) are actually
the same random variable. Then, a random variable is independent of itself if and only if it is
constant. In our case, this is true if and only if E(X|Z = 0) = E(X|Z = 1), which, in turn, is true
if and only if p=0 or 1.

g) Let (S,,n € N) be the simple symmetric random walk and let (F,,n € N) be its natural
filtration. Define a random time

T =inf{n: S, = Sp—2,n > 2}.

Is T a stopping time?

Answer: Yes. This is a stopping time since

{T'=n} ={S, = Sp-2} ﬂ m Sp # Sk_o

2<k<n

Since {S,, = Sp—2} € Fp, and {Si = Sk_2} € Fr C Fy, the event {T = n} € F,.

Exercise 2. (15 points)
Let X and Y be random variables defined on common probability space (€2, F,P). Define

0= o, (14 1520

a) First, we would like to confirm that d(X,Y) is a distance metric. Show that d(X,Y") satisfies
the triangle inequality. That is, d(X,Z) < d(X,Y) +d(Y, Z) for any X, Y, and Z.

Hint: the function f(z) =logy(1 + z) is sub-additive, e.g. f(z+y) < f(z)+ f(y).



Solution: For all x,y,z € R we have

1 14+ —— [z = 2|
o)

14 lt —y+y— 2| )

I+|lz—-—y+y— 2

Sl
. 2(1 =t =2l )
Sl

_l’_

T+ fr—yl+ly—2

T k| B k] >

L+lz—yl  1+y—2z|

M—y|> < ly — 2| )
<lo 1+ ——— ) +lo 1+ -
= &< T+le—y) T2 T Ty — ]

where the first inequality follows from the fact that logy(1 + x) is an increasing function in x and
the last inequality follows from the hint. Now, since the inequality holds for X (w),Y (w), Z(w) for
every w € {2, we can take the expectation of both sides to get the desired result.

+

Next, we would like to check if convergence with respect to d(X,Y) is equivalent to convergence in
probability (a distance metric with this property is sometimes called a Ky-Fan metric).

b) Let (X,,n > 1) be sequence of random variables and X be another random variable, all defined
on the same probability space (2, F,P). Show that if X, _ﬂ; X then lim, o d(X,, X) = 0.
n—oo

Solution: Fix ¢ > 0 and note that convergence in probability implies that

lim P({|X, — X| > }) = 0.

For simplicity, define g(z,y) = log, (1 + 1J|f|;3|y‘> We can write

d(Xpn, X) = E (9(Xn, X)11x,-x|2) + E (9(Xn, X)1x,—x|<c)
€
SEUmrmx)+b&<1+l+J

=P{| X, — X| > ¢€}) + log, <1+1—6|-€>

Therefore

lim d(X,,X) <log, < + 1 —l—e)

n—oo

Since this is true for any €, we can further take a limit as € goes to zero to get the desired result.

c) Is the converse true? That is, if lim, . d(X,,X) = 0 then X, ;g X. If yes, prove the
n oo

statement. If no, provide a counter example.

Solution: Yes, the converse is also true. Fix e > 0 and define v = log, (1 + 1%_6) Then



1
P{[Xn—X|>€})=v- ;E (1|Xn—X|ze\)
1
1
< —d(X,, X).
< Zd(Xn, X)

Since for a fixed €, v is just a constant, we have that

1
lim P ({|X, — X| > ¢}) = - lim d(X,, X) =0.

V n—oo

Exercise 3. (25 points)

Recall that the moment-generating function of a random variable X is defined for every ¢ € R as

Mx (t) :E(etx).

a) Show that if X ~ A(0,0?), then

Solution: For X ~ N (0,0?) we have

1 o0 =2
Myx(t) = E(e!™) = \/W/ e 207 dx
—0o0
1 t20'2 +oo _(w*UQt)2

e 2 e 202 dx

V2oro? NS

202
—on(22).

We now introduce the concept of sub-gaussianity. A random variable X is called sub-gaussian if,
for every t > 0,

1
Mx(t) < exp (2752772)
for some € R*. (Note that 72 need not be the variance of X!).

b) Show that if X ~ U([—a,a]) for some a > 0, then X is sub-gaussian with n = a.
Hint: Recall that e* =% > 2

n=0 n! -

n

Solution: For X ~ U([—a,a]) we have

M) =B = [



Now note that, using the Taylor expansion of e given in the hint, we can write

where the inequality is due to the fact that (2n + 1)! > 2"n!, and the last equality is due to the

Taylor expansion of exp (#) Hence, we conclude that
1 242 1242
Mx(t) < 5 exp <2a> < exp (;) :

c) Show that if X is sub-gaussian for some 7 € RT, then for every t > 0,

2
P(|X[ >¢) < 2exp <—2772) :

Solution: By the Chebyshev-Markov inequality with ¢ (z) = e**, we have

s X 2.2
]P’(th)SE(e )SeXp<82n—st>.

est

The optimal s (which can be found by taking the derivative of the right-hand side and putting it
equal to 0) is s = 77%’ which we can substitute into the equation to get

t2

The same upper-bound can be obtained similarly for P(X < —t), proving the result.

d) Prove the following generalization of Hoeffding’s inequality. Let X;,i € {1,2,...,n} be inde-
pendent random variables, where for each i, X; — E(X;) is sub-gaussian for some 7; € R*. Let also
Sp =Y i1 X;. Show that for every ¢t > 0,

t2
P(|S,, — E(S,)| >t §2exp<—n>.
(150 — E(S0)| 2 1 S

Solution: Note that, if Y7 and Ys are two independent sub-gaussian random variables for some 1,
and 72, then Y; + Y3 is sub-gaussian with n? = 72 + n2. In fact,

20,2 2
My, 1y, (t) = E(!Y1H2)) = E(e")E(e??) < exp <’f(7h2+772)> _

6



One can apply this result recursively to prove the same property for the sum of n independent ran-
dom variables. Then, the required result follows directly from part 3 with X = >"" | (X; — E(X;)).

e) Let X;,i € {1,2,...,n} be sub-gaussian random variables with the same n € RT. Show that
E <max Xi> <nv2lnn.
1

Hint: Start by rewriting E (max; X;) = E (Inexp (¢t max; X;)).

£ (e (1) )
i (exp (rmaxx; ) )

InE <max exp tXZ)>

InE (Z exp (tX;) )

Solution: Using the hint, we have

E (max Xi> =
(2

IN

S S N e B

IN

where the first inequality follows from Jensen’s inequality, and the last one is due to the fact that
the n random variables are sub-gaussian with the same 7. The optimal ¢ (obtained once again by

putting the derivative equal to 0) is t = ¥ Q;H(n). Substituing this value into the last equation gives

E (maXXi> < 277\/ =nv2Ilnn.
3

a) Let (Q,F,P) be a probability space and {F,,n € N} be a filtration on this space. Let A € F
and define Y;, = E (14|F,). Show that (Y;,,n € N) is a martingale with respect to the filtration
{Fn,n € N}

Exercise 4. (25 points)

Solution: (Y,,n € N) is a special case of the Doob’s martingale studied in class. The three
properties could be immediately checked:

e 0 <Y, <1 forall n, soY, is bounded, and therefore integrable for all n

e Y, if F,,- measurable by definition of conditional expectation

o E(Yot1|Fn) =E(E(1a|Fns1) [Fn) = E(14]F,) =Y, where the second to last equality is the
towering property of conditional expectation.



b) Is it true that
Y, = Y, as.

for some random variable Y,,? Why or why not? Could we say something about convergence in
distribution to Y47

Solution: Yes, (Y,,,n € N) is a bounded martingale. Therefore it satisfies the conditions of the
martingale convergence theorem (v1) and converges almost surely to some Y. Convergence almost
surely implies convergence in distribution. So, this martingale also converges in distribution.

Next, we will use this martingale to prove Kolmogorov’s zero-one law. Let Xy, X1,... be indepen-
dent random variables. Recall that the tail o-field is
[o¢]
T=()Hn
n=0

where H,, = 0(Xy, Xn+1,...) and assume A € 7. Our goal will be to prove that P(A) = 0 or
P(A) = 1.

c) Let F, = o(Xy,...,X,) and F be the smallest o-field that contains every F,. A standard
measure-theoretic argument could be used to show that Yoo = E (14|F), but we will take it as a
fact here.

Assume Y, = E (14]|Foo). Show, furthermore, that for all A € T,
Yoo i=E(14|Fx) = 14.

Solution: Since A € T we have that

n=0

AeHy=0(Xo,X1,...)=Jo(Xo,.... Xn) = | Fn C P
n=0
Then
E(14]Fs) = 14.
by definition of conditional expectation and the fact that 14 is F-measurable.
d) Show that
Y, = E (14]|F,) = P(A4).

Hint: How are the o-fields T and F, related to each other?

Solution: Recall from class that the o-fields 7 and F,, are independent. This is because H, 11
and JF,, are independent, and 7 C Hy,41. Then

E (LalFy) = E (1) = P(4).

e) Combine the ingredients above to prove Kolmogorov’s zero-one law.

Solution: By parts (a) and (b) we know that (Y,,n € N) is a martingale that converges almost
surely to Y. By part (d) we know that Y,, = P(A) is a constant sequence of random variables. By
part (c) we know that it converges to 14 which can only take values zero or one. Therefore, there
are two options. Either 14 =0 a.s. or 14 = 1 a.s.. and, likewise, P(4) =0 or P(A4) = 1.



