Final exam: solutions

Exercise 1. Quiz. (25 points) Answer each short question below. For yes/no questions explicitly say if the statement is true of false and provide a brief justification (proof or counter-example) for your answer. For other questions, provide the result of you computation, as well as a brief justification for your answer.
a) Let $\Omega=\{1,2, \ldots, 6\}$ and $\mathcal{A}=\{\{1,2,3\},\{1,3,5\}\}$. Let $\mathcal{F}=\sigma(\mathcal{A})$ be the σ-field generated by \mathcal{A}. What are the atoms of \mathcal{F} ?

Solution: The atoms of $\sigma(\mathcal{A})$ are $\{\{2\},\{5\},\{1,3\},\{4,6\}\}$. Indeed, you can check that each of these sets could be obtained with unions and intersections of the following sets $\{\emptyset,\{1,2,3\},\{1,3,5\}, \Omega\}$. Thus, they must be in $\sigma(\mathcal{A})$. On the other hand, any smaller sets (such as $\{1\},\{3\},\{4\}$, or $\{6\}$) could not be obtained in this way. And so, the smallest σ-field containing \mathcal{A} will not contain them.
b) Let $\Omega=[0,1]^{2}, \mathcal{F}=\mathcal{B}\left([0,1]^{2}\right)$, and \mathbb{P} be the probability measure on (Ω, \mathcal{F}) defined as

$$
\mathbb{P}(] a, b[\times] c, d[)=(b-a) \cdot(d-c), \text { for } 0 \leq a<b \leq 1 \text { and } 0 \leq c<d \leq 1
$$

which can be extended uniquely to all Borel sets in $\mathcal{B}\left([0,1]^{2}\right)$, according to Caratheodory's extension theorem. Let us now consider the following random variable defined on $(\Omega, \mathcal{F}, \mathbb{P})$:

$$
X\left(\omega_{1}, \omega_{2}\right)=\frac{\omega_{1}-\omega_{2}}{2} .
$$

Compute the $\operatorname{cdf} F_{X}$ of X.

Solution: First, note that the range of the random variable X is $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Thus, the CDF $F_{X}(t)=0$ for $t<-\frac{1}{2}$ and $F_{X}(t)=1$ for $t \geq \frac{1}{2}$.

Now, for $t \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, we have:

$$
\begin{aligned}
F_{X}(t)=\mu_{X}((-\infty, t]) & =\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right) \in[0,1]^{2}: X\left(\omega_{1}, \omega_{2}\right) \leq t\right\}\right) \\
& =\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right) \in[0,1]^{2}: \omega_{1}-\omega_{2} \leq 2 t\right\}\right)
\end{aligned}
$$

Note that the area $\left\{\left(\omega_{1}, \omega_{2}\right) \in[0,1]^{2}: \omega_{1}-\omega_{2} \leq 2 t\right\}$ represents different shapes in $[0,1] \times[0,1]$ for positive and negative values of $2 t$. Thus, we divide our analysis into two cases:

Case 1: $-\frac{1}{2}<t \leq 0$:

The area $\left\{\left(\omega_{1}, \omega_{2}\right) \in[0,1]^{2}: \omega_{1}-\omega_{2} \leq 2 t\right\}$ represents a right-angled triangle $\left(\Delta_{1}\right)$ is an element of the sigma field $\mathcal{F}=\mathcal{B}\left([0,1]^{2}\right)$. Thus, the probability measure $\mathbb{P}\left(\Delta_{1}\right)$ is given by its area. Thus,

$$
F_{X}(t)=\operatorname{Area}\left(\Delta_{1}\right)=\frac{1}{2}(1+2 t)(1+2 t)
$$

Case 2: $0<t \leq \frac{1}{2}$:

The area $\left\{\left(\omega_{1}, \omega_{2}\right) \in[0,1]^{2}: \omega_{1}-\omega_{2} \leq 2 t\right\}$ represents a pentagon $\left(\Delta_{2}\right)$ in this case which is again an element of the sigma field $\mathcal{F}=\mathcal{B}\left([0,1]^{2}\right)$. Thus, the probability measure $\mathbb{P}\left(\Delta_{2}\right)$ is given by its area which can be easily computed as:

$$
F_{X}(t)=\operatorname{Area}\left(\Delta_{2}\right)=1-\frac{1}{2}(1-2 t)(1-2 t)
$$

Thus, the CDF of the random variable X is the following:

$$
F_{X}(t)= \begin{cases}0 & \text { if } t \leq-\frac{1}{2} \\ \frac{1}{2}(1+2 t)^{2} & \text { if }-\frac{1}{2}<t \leq 0 \\ 1-\frac{1}{2}(1-2 t)^{2} & \text { if } 0<t \leq \frac{1}{2} \\ 1 & \text { if } t>\frac{1}{2}\end{cases}
$$

c) Let X be a random variable supported on $\{0,1\}$ with $\mathbb{P}(\{X=1\})=\mathbb{P}(\{X=-1\})=\frac{1}{2}$. Let $Z \sim \mathcal{N}(0,1)$ and assume that X and Z are independent. Then, is $(X Z, Z)$ a Gaussian random vector?

Answer: No.

Consider the distribution of the random variable $X Z+Z$. We have that $X Z+Z=0$ with probability $\frac{1}{2}$. Thus, this is not a continuous distribution and therefore it is not a Gaussian random variable. Recall that the sum of the components of a Guassian random vector has Gaussian distribution. Therefore, this is not a Gaussian random vector.

Lets compute the CDF (distribution) of the random variable $X Z$.

$$
\begin{aligned}
\mathbb{P}(\{X Z \leq t\}) & =\mathbb{P}(\{X Z \leq t\} \mid\{X=-1\}) \cdot \mathbb{P}(\{X=-1\})+\mathbb{P}(\{X Z \leq t\} \mid\{X=1\}) \cdot \mathbb{P}(\{X=1\}) \\
& =\frac{1}{2} \mathbb{P}(\{Z \geq-t\})+\frac{1}{2} \mathbb{P}(\{Z \leq t\})=\mathbb{P}(\{Z \leq t\})
\end{aligned}
$$

We see here that both X and $X Z$ are continuous random variable. However, we see that for a diagonal line in \mathbb{R}^{2} (which has Lebesgue measure 0 (i.e., $|\Delta|=0$),

$$
\mathbb{P}(\{(X Z, Z) \in \Delta\})=\mathbb{P}(\{X Z+Z=0\})=\mathbb{P}(\{X(1+Z)=0\})=\mathbb{P}(\{Z=-1\})=\frac{1}{2}
$$

Thus, $(X Z, Z)$ is a not a continuous random vector.
(See Example 6.2 and Example 6.7 from the lecture notes for details.)
d) Let X and Z be as in part (c). Then, is $(X Z, Z)$ a continuous random vector?

Answer: No. See solution above.
e) Let X and Y be integrable random variables. If $Y=g(X)$ for some measurable function $g: \mathbb{R} \rightarrow \mathbb{R}$, then is it true that $\mathbb{E}(X \mid Y)=h(X)$ for some function $h: \mathbb{R} \rightarrow \mathbb{R}$?

Answer: Yes. In fact, $\mathbb{E}(X \mid Y)=f(Y)$ for some measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$. Hence, since $Y=g(X)$, we have that $\mathbb{E}(X \mid Y)=f(Y)=f(g(X))=h(X)$ for $h=f \circ h$.
f) Let X and Y be two independent Bernoulli random variables with parameter $0 \leq p \leq 1$ Let Z be defined as

$$
Z= \begin{cases}1, & \text { if } X+Y=0, \\ 0, & \text { otherwise }\end{cases}
$$

Are $\mathbb{E}(X \mid Z)$ and $\mathbb{E}(Y \mid Z)$ independent?

Answer: No (in general).

Yes if $p=0$ or 1 , no otherwise. In fact, note that $\mathbb{E}(X \mid Z)=f(Z)$ and $\mathbb{E}(Y \mid Z)=g(Z)$. Furthermore, by symmetry of the problem, we must have $f(Z)=g(Z)$, that is, $\mathbb{E}(X \mid Z)$ and $\mathbb{E}(Y \mid Z)$ are actually the same random variable. Then, a random variable is independent of itself if and only if it is constant. In our case, this is true if and only if $\mathbb{E}(X \mid Z=0)=\mathbb{E}(X \mid Z=1)$, which, in turn, is true if and only if $p=0$ or 1 .
g) Let $\left(S_{n}, n \in \mathbb{N}\right)$ be the simple symmetric random walk and let $\left(\mathcal{F}_{n}, n \in \mathbb{N}\right)$ be its natural filtration. Define a random time

$$
T=\inf \left\{n: S_{n}=S_{n-2}, n \geq 2\right\} .
$$

Is T a stopping time?

Answer: Yes. This is a stopping time since

$$
\{T=n\}=\left\{S_{n}=S_{n-2}\right\} \bigcap\left(\bigcap_{2 \leq k<n} S_{k} \neq S_{k-2}\right)
$$

Since $\left\{S_{n}=S_{n-2}\right\} \in \mathcal{F}_{n}$ and $\left\{S_{k}=S_{k-2}\right\} \in \mathcal{F}_{k} \subset \mathcal{F}_{n}$, the event $\{T=n\} \in \mathcal{F}_{n}$.

Exercise 2. (15 points)

Let X and Y be random variables defined on common probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define

$$
d(X, Y)=\mathbb{E}\left(\log _{2}\left(1+\frac{|X-Y|}{1+|X-Y|}\right)\right) .
$$

a) First, we would like to confirm that $d(X, Y)$ is a distance metric. Show that $d(X, Y)$ satisfies the triangle inequality. That is, $d(X, Z) \leq d(X, Y)+d(Y, Z)$ for any X, Y, and Z.

Hint: the function $f(x)=\log _{2}(1+x)$ is sub-additive, e.g. $f(x+y) \leq f(x)+f(y)$.

Solution: For all $x, y, z \in \mathbb{R}$ we have

$$
\begin{aligned}
\log _{2}\left(1+\frac{|x-z|}{1+|x-z|}\right) & =\log _{2}\left(1+\frac{|x-y+y-z|}{1+|x-y+y-z|}\right) \\
& \leq \log _{2}\left(1+\frac{|x-y|+|y-z|}{1+|x-y|+|y-z|}\right) \\
& \leq \log _{2}\left(1+\frac{|x-y|}{1+|x-y|}+\frac{|y-z|}{1+|y-z|}\right) \\
& \leq \log _{2}\left(1+\frac{|x-y|}{1+|x-y|}\right)+\log _{2}\left(1+\frac{|y-z|}{1+|y-z|}\right)
\end{aligned}
$$

where the first inequality follows from the fact that $\log _{2}(1+x)$ is an increasing function in x and the last inequality follows from the hint. Now, since the inequality holds for $X(\omega), Y(\omega), Z(\omega)$ for every $\omega \in \Omega$, we can take the expectation of both sides to get the desired result.

Next, we would like to check if convergence with respect to $d(X, Y)$ is equivalent to convergence in probability (a distance metric with this property is sometimes called a Ky-Fan metric).
b) Let ($X_{n}, n \geq 1$) be sequence of random variables and X be another random variable, all defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Show that if $X_{n} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} X$ then $\lim _{n \rightarrow \infty} d\left(X_{n}, X\right)=0$.

Solution: Fix $\epsilon>0$ and note that convergence in probability implies that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right\}\right)=0
$$

For simplicity, define $g(x, y)=\log _{2}\left(1+\frac{|x-y|}{1+|x-y|}\right)$. We can write

$$
\begin{aligned}
d\left(X_{n}, X\right) & =\mathbb{E}\left(g\left(X_{n}, X\right) 1_{\left|X_{n}-X\right| \geq \epsilon \mid}\right)+\mathbb{E}\left(g\left(X_{n}, X\right) 1_{\left|X_{n}-X\right|<\epsilon}\right) \\
& \leq \mathbb{E}\left(1_{\left|X_{n}-X\right| \geq \epsilon \mid}\right)+\log _{2}\left(1+\frac{\epsilon}{1+\epsilon}\right) \\
& =\mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right\}\right)+\log _{2}\left(1+\frac{\epsilon}{1+\epsilon}\right)
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty} d\left(X_{n}, X\right) \leq \log _{2}\left(1+\frac{\epsilon}{1+\epsilon}\right) .
$$

Since this is true for any ϵ, we can further take a limit as ϵ goes to zero to get the desired result.
c) Is the converse true? That is, if $\lim _{n \rightarrow \infty} d\left(X_{n}, X\right)=0$ then $X_{n} \underset{n \rightarrow \infty}{\xrightarrow[P]{P}} X$. If yes, prove the statement. If no, provide a counter example.

Solution: Yes, the converse is also true. Fix $\epsilon>0$ and define $\nu=\log _{2}\left(1+\frac{\epsilon}{1+\epsilon}\right)$. Then

$$
\begin{aligned}
\mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right\}\right) & =\nu \cdot \frac{1}{\nu} \mathbb{E}\left(1_{\left|X_{n}-X\right| \geq \epsilon \mid}\right) \\
& \leq \frac{1}{\nu} \mathbb{E}\left(g\left(X_{n}, X\right) 1_{\left|X_{n}-X\right| \geq \epsilon}\right) \\
& \leq \frac{1}{\nu} d\left(X_{n}, X\right) .
\end{aligned}
$$

Since for a fixed ϵ, ν is just a constant, we have that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\{\left|X_{n}-X\right| \geq \epsilon\right\}\right)=\frac{1}{\nu} \lim _{n \rightarrow \infty} d\left(X_{n}, X\right)=0
$$

Exercise 3. (25 points)

Recall that the moment-generating function of a random variable X is defined for every $t \in \mathbb{R}$ as

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)
$$

a) Show that if $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, then

$$
M_{X}(t)=\exp \left(\frac{1}{2} t^{2} \sigma^{2}\right)
$$

Solution: For $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ we have

$$
\begin{aligned}
M_{X}(t)=\mathbb{E}\left(e^{t X}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{+\infty} e^{t x} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{t^{2} \sigma^{2}}{2}} \int_{-\infty}^{+\infty} e^{-\frac{\left(x-\sigma^{2} t\right)^{2}}{2 \sigma^{2}}} d x \\
& =\exp \left(\frac{t^{2} \sigma^{2}}{2}\right) .
\end{aligned}
$$

We now introduce the concept of sub-gaussianity. A random variable X is called sub-gaussian if, for every $t>0$,

$$
M_{X}(t) \leq \exp \left(\frac{1}{2} t^{2} \eta^{2}\right)
$$

for some $\eta \in \mathbb{R}^{+}$. (Note that η^{2} need not be the variance of $X!$).
b) Show that if $X \sim \mathcal{U}([-a, a])$ for some $a>0$, then X is sub-gaussian with $\eta=a$.

Hint: Recall that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Solution: For $X \sim \mathcal{U}([-a, a])$ we have

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)=\int_{-a}^{a} \frac{1}{2 a} e^{t x} d x=\frac{1}{2 a t}\left(e^{t a}-e^{-t a}\right) .
$$

Now note that, using the Taylor expansion of e^{x} given in the hint, we can write

$$
\begin{aligned}
e^{t a}-e^{-t a} & =\sum_{n=0}^{\infty} \frac{(t a)^{n}}{n!}-\sum_{n=0}^{\infty} \frac{(-t a)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \frac{(t a)^{2 n+1}}{(2 n+1)!} \\
& \leq t a \sum_{n=0}^{\infty} \frac{\left(t^{2} a^{2}\right)^{n}}{2^{n} n!} \\
& =t a \exp \left(\frac{t^{2} a^{2}}{2}\right)
\end{aligned}
$$

where the inequality is due to the fact that $(2 n+1)!\geq 2^{n} n!$, and the last equality is due to the Taylor expansion of $\exp \left(\frac{t^{2} a^{2}}{2}\right)$. Hence, we conclude that

$$
M_{X}(t) \leq \frac{1}{2} \exp \left(\frac{t^{2} a^{2}}{2}\right) \leq \exp \left(\frac{t^{2} a^{2}}{2}\right)
$$

c) Show that if X is sub-gaussian for some $\eta \in \mathbb{R}^{+}$, then for every $t>0$,

$$
\mathbb{P}(|X| \geq t) \leq 2 \exp \left(-\frac{t^{2}}{2 \eta^{2}}\right)
$$

Solution: By the Chebyshev-Markov inequality with $\psi(x)=e^{s x}$, we have

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}\left(e^{s X}\right)}{e^{s t}} \leq \exp \left(\frac{s^{2} \eta^{2}}{2}-s t\right)
$$

The optimal s (which can be found by taking the derivative of the right-hand side and putting it equal to 0) is $s=\frac{t}{\eta^{2}}$, which we can substitute into the equation to get

$$
\mathbb{P}(X \geq t) \leq \exp \left(\frac{t^{2}}{2 \eta^{2}}\right)
$$

The same upper-bound can be obtained similarly for $\mathbb{P}(X \leq-t)$, proving the result.
d) Prove the following generalization of Hoeffding's inequality. Let $X_{i}, i \in\{1,2, \ldots, n\}$ be independent random variables, where for each $i, X_{i}-\mathbb{E}\left(X_{i}\right)$ is sub-gaussian for some $\eta_{i} \in \mathbb{R}^{+}$. Let also $S_{n}=\sum_{i=1}^{n} X_{i}$. Show that for every $t>0$,

$$
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left(S_{n}\right)\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2}}{2 \sum_{i=1}^{n} \eta_{i}^{2}}\right)
$$

Solution: Note that, if Y_{1} and Y_{2} are two independent sub-gaussian random variables for some η_{1} and η_{2}, then $Y_{1}+Y_{2}$ is sub-gaussian with $\eta^{2}=\eta_{1}^{2}+\eta_{2}^{2}$. In fact,

$$
M_{Y_{1}+Y_{2}}(t)=\mathbb{E}\left(e^{t\left(Y_{1}+Y_{2}\right)}\right)=\mathbb{E}\left(e^{t Y_{1}}\right) \mathbb{E}\left(e^{t Y_{2}}\right) \leq \exp \left(\frac{t^{2}\left(\eta_{1}^{2}+\eta_{2}^{2}\right)}{2}\right)
$$

One can apply this result recursively to prove the same property for the sum of n independent random variables. Then, the required result follows directly from part 3 with $X=\sum_{i=1}^{n}\left(X_{i}-\mathbb{E}\left(X_{i}\right)\right)$.
e) Let $X_{i}, i \in\{1,2, \ldots, n\}$ be sub-gaussian random variables with the same $\eta \in \mathbb{R}^{+}$. Show that

$$
\mathbb{E}\left(\max _{i} X_{i}\right) \leq \eta \sqrt{2 \ln n} .
$$

Hint: Start by rewriting $\mathbb{E}\left(\max _{i} X_{i}\right)=\frac{1}{t} \mathbb{E}\left(\ln \exp \left(t \max _{i} X_{i}\right)\right)$.

Solution: Using the hint, we have

$$
\begin{aligned}
\mathbb{E}\left(\max _{i} X_{i}\right) & =\frac{1}{t} \mathbb{E}\left(\ln \exp \left(t \max _{i} X_{i}\right)\right) \\
& \leq \frac{1}{t} \ln \mathbb{E}\left(\exp \left(t \max _{i} X_{i}\right)\right) \\
& =\frac{1}{t} \ln \mathbb{E}\left(\max _{i} \exp \left(t X_{i}\right)\right) \\
& \leq \frac{1}{t} \ln \mathbb{E}\left(\sum_{i=1}^{n} \exp \left(t X_{i}\right)\right) \\
& =\frac{1}{t} \ln \left(\sum_{i=1}^{n} \mathbb{E}\left(\exp \left(t X_{i}\right)\right)\right) \\
& \leq \frac{\ln n}{t}+\frac{\eta^{2} t}{2}
\end{aligned}
$$

where the first inequality follows from Jensen's inequality, and the last one is due to the fact that the n random variables are sub-gaussian with the same η. The optimal t (obtained once again by putting the derivative equal to 0) is $t=\frac{\sqrt{2 \ln (n)}}{\eta}$. Substituing this value into the last equation gives

$$
\mathbb{E}\left(\max _{i} X_{i}\right) \leq 2 \eta \sqrt{\frac{\ln n}{2}}=\eta \sqrt{2 \ln n} .
$$

Exercise 4. (25 points)

a) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $\left\{\mathcal{F}_{n}, n \in \mathbb{N}\right\}$ be a filtration on this space. Let $A \in \mathcal{F}$ and define $Y_{n}=\mathbb{E}\left(1_{A} \mid \mathcal{F}_{n}\right)$. Show that $\left(Y_{n}, n \in \mathbb{N}\right)$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{n}, n \in \mathbb{N}\right\}$.

Solution: $\left(Y_{n}, n \in \mathbb{N}\right)$ is a special case of the Doob's martingale studied in class. The three properties could be immediately checked:

- $0 \leq Y_{n} \leq 1$ for all n, so Y_{n} is bounded, and therefore integrable for all n
- Y_{n} if $\mathcal{F}_{n^{-}}$measurable by definition of conditional expectation
- $\mathbb{E}\left(Y_{n+1} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(\mathbb{E}\left(1_{A} \mid \mathcal{F}_{n+1}\right) \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(1_{A} \mid \mathcal{F}_{n}\right)=Y_{n}$ where the second to last equality is the towering property of conditional expectation.
b) Is it true that

$$
Y_{n} \rightarrow Y_{\infty}, \text { a.s. }
$$

for some random variable Y_{∞} ? Why or why not? Could we say something about convergence in distribution to Y_{∞} ?

Solution: Yes, $\left(Y_{n}, n \in \mathbb{N}\right)$ is a bounded martingale. Therefore it satisfies the conditions of the martingale convergence theorem (v1) and converges almost surely to some Y_{∞}. Convergence almost surely implies convergence in distribution. So, this martingale also converges in distribution.

Next, we will use this martingale to prove Kolmogorov's zero-one law. Let X_{0}, X_{1}, \ldots be independent random variables. Recall that the tail σ-field is

$$
\mathcal{T}=\bigcap_{n=0}^{\infty} \mathcal{H}_{n}
$$

where $\mathcal{H}_{n}=\sigma\left(X_{n}, X_{n+1}, \ldots\right)$ and assume $A \in \mathcal{T}$. Our goal will be to prove that $\mathbb{P}(A)=0$ or $\mathbb{P}(A)=1$.
c) Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$ and \mathcal{F}_{∞} be the smallest σ-field that contains every \mathcal{F}_{n}. A standard measure-theoretic argument could be used to show that $Y_{\infty}=\mathbb{E}\left(1_{A} \mid \mathcal{F}_{\infty}\right)$, but we will take it as a fact here.

Assume $Y_{\infty}=\mathbb{E}\left(1_{A} \mid \mathcal{F}_{\infty}\right)$. Show, furthermore, that for all $A \in \mathcal{T}$,

$$
Y_{\infty}:=\mathbb{E}\left(1_{A} \mid \mathcal{F}_{\infty}\right)=1_{A} .
$$

Solution: Since $A \in \mathcal{T}$ we have that

$$
A \in \mathcal{H}_{0}=\sigma\left(X_{0}, X_{1}, \ldots\right)=\bigcup_{n=0}^{\infty} \sigma\left(X_{0}, \ldots, X_{n}\right)=\bigcup_{n=0}^{\infty} \mathcal{F}_{n} \subset \mathcal{F}_{\infty}
$$

Then

$$
\mathbb{E}\left(1_{A} \mid \mathcal{F}_{\infty}\right)=1_{A} .
$$

by definition of conditional expectation and the fact that 1_{A} is \mathcal{F}_{∞}-measurable.
d) Show that

$$
Y_{n}:=\mathbb{E}\left(1_{A} \mid \mathcal{F}_{n}\right)=\mathbb{P}(A) .
$$

Hint: How are the σ-fields \mathcal{T} and \mathcal{F}_{n} related to each other?
Solution: Recall from class that the σ-fields \mathcal{T} and \mathcal{F}_{n} are independent. This is because \mathcal{H}_{n+1} and \mathcal{F}_{n} are independent, and $\mathcal{T} \subset \mathcal{H}_{n+1}$. Then

$$
\mathbb{E}\left(1_{A} \mid \mathcal{F}_{n}\right)=\mathbb{E}\left(1_{A}\right)=\mathbb{P}(A) .
$$

e) Combine the ingredients above to prove Kolmogorov's zero-one law.

Solution: By parts (a) and (b) we know that $\left(Y_{n}, n \in \mathbb{N}\right)$ is a martingale that converges almost surely to Y_{∞}. By part (d) we know that $Y_{n}=\mathbb{P}(A)$ is a constant sequence of random variables. By part (c) we know that it converges to 1_{A} which can only take values zero or one. Therefore, there are two options. Either $1_{A}=0$ a.s. or $1_{A}=1$ a.s.. and, likewise, $\mathbb{P}(A)=0$ or $\mathbb{P}(A)=1$.

