
Advanced Probability and Applications EPFL - Spring Semester 2023-2024

Final exam: solutions

Exercise 1. Quiz. (25 points) Answer each short question below. For yes/no questions explicitly
say if the statement is true of false and provide a brief justification (proof or counter-example) for
your answer. For other questions, provide the result of you computation, as well as a brief justifi-
cation for your answer.

a) Let Ω = {1, 2, . . . , 6} and A = {{1, 2, 3}, {1, 3, 5}}. Let F = σ(A) be the σ-field generated by
A. What are the atoms of F?

Solution: The atoms of σ(A) are {{2}, {5}, {1, 3}, {4, 6}}. Indeed, you can check that each of these
sets could be obtained with unions and intersections of the following sets {∅, {1, 2, 3}, {1, 3, 5},Ω}.
Thus, they must be in σ(A). On the other hand, any smaller sets (such as {1}, {3}, {4}, or {6})
could not be obtained in this way. And so, the smallest σ-field containing A will not contain them.

b) Let Ω = [0, 1]2, F = B([0, 1]2), and P be the probability measure on (Ω,F) defined as

P (]a, b[×]c, d[) = (b− a) · (d− c), for 0 ≤ a < b ≤ 1 and 0 ≤ c < d ≤ 1

which can be extended uniquely to all Borel sets in B([0, 1]2), according to Caratheodory’s extension
theorem. Let us now consider the following random variable defined on (Ω,F ,P):

X(ω1, ω2) =
ω1 − ω2

2
.

Compute the cdf FX of X.

Solution: First, note that the range of the random variable X is
[
− 1

2 ,
1
2

]
. Thus, the CDF

FX(t) = 0 for t < −1
2 and FX(t) = 1 for t ≥ 1

2 .

Now, for t ∈
[
− 1

2 ,
1
2

]
, we have:

FX(t) = µX((−∞, t]) = P({(ω1, ω2) ∈ [0, 1]2 : X(ω1, ω2) ≤ t})
= P({(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t})

Note that the area {(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t} represents different shapes in [0, 1]× [0, 1] for
positive and negative values of 2t. Thus, we divide our analysis into two cases:

Case 1: −1
2 < t ≤ 0:

The area {(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t} represents a right-angled triangle (∆1) is an element of
the sigma field F = B([0, 1]2). Thus, the probability measure P(∆1) is given by its area. Thus,

FX(t) = Area(∆1) =
1

2
(1 + 2t)(1 + 2t)
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Case 2: 0 < t ≤ 1
2 :

The area {(ω1, ω2) ∈ [0, 1]2 : ω1 − ω2 ≤ 2t} represents a pentagon (∆2) in this case which is again
an element of the sigma field F = B([0, 1]2). Thus, the probability measure P(∆2) is given by its
area which can be easily computed as:

FX(t) = Area(∆2) = 1− 1

2
(1− 2t)(1− 2t)

Thus, the CDF of the random variable X is the following:

FX(t) =


0 if t ≤ −1

2 ,
1
2(1 + 2t)2 if −1

2 < t ≤ 0

1− 1
2(1− 2t)2 if 0 < t ≤ 1

2

1 if t > 1
2

c) Let X be a random variable supported on {0, 1} with P({X = 1}) = P({X = −1}) = 1
2 . Let

Z ∼ N (0, 1) and assume that X and Z are independent. Then, is (XZ,Z) a Gaussian random
vector?

Answer: No.

Consider the distribution of the random variableXZ+Z. We have thatXZ+Z = 0 with probability
1
2 . Thus, this is not a continuous distribution and therefore it is not a Gaussian random variable.
Recall that the sum of the components of a Guassian random vector has Gaussian distribution.
Therefore, this is not a Gaussian random vector.

Lets compute the CDF (distribution) of the random variable XZ.

P({XZ ≤ t}) = P({XZ ≤ t}|{X = −1}).P({X = −1}) + P({XZ ≤ t}|{X = 1}).P({X = 1})

=
1

2
P({Z ≥ −t}) + 1

2
P({Z ≤ t}) = P({Z ≤ t})

We see here that both X and XZ are continuous random variable. However, we see that for a
diagonal line in R2 (which has Lebesgue measure 0 (i.e., |∆| = 0),

P({(XZ,Z) ∈ ∆}) = P({XZ + Z = 0}) = P({X(1 + Z) = 0}) = P({Z = −1}) = 1

2
.

Thus, (XZ,Z) is a not a continuous random vector.

(See Example 6.2 and Example 6.7 from the lecture notes for details.)

d) Let X and Z be as in part (c). Then, is (XZ,Z) a continuous random vector?

Answer: No. See solution above.
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e) Let X and Y be integrable random variables. If Y = g(X) for some measurable function
g : R → R, then is it true that E(X|Y ) = h(X) for some function h : R → R?

Answer: Yes. In fact, E(X|Y ) = f(Y ) for some measurable function f : R → R. Hence, since
Y = g(X), we have that E(X|Y ) = f(Y ) = f(g(X)) = h(X) for h = f ◦ h.

f) Let X and Y be two independent Bernoulli random variables with parameter 0 ≤ p ≤ 1 Let Z
be defined as

Z =

{
1, if X + Y = 0,

0, otherwise.

Are E(X|Z) and E(Y |Z) independent?

Answer: No (in general).

Yes if p = 0 or 1, no otherwise. In fact, note that E(X|Z) = f(Z) and E(Y |Z) = g(Z). Furthermore,
by symmetry of the problem, we must have f(Z) = g(Z), that is, E(X|Z) and E(Y |Z) are actually
the same random variable. Then, a random variable is independent of itself if and only if it is
constant. In our case, this is true if and only if E(X|Z = 0) = E(X|Z = 1), which, in turn, is true
if and only if p = 0 or 1.

g) Let (Sn, n ∈ N) be the simple symmetric random walk and let (Fn, n ∈ N) be its natural
filtration. Define a random time

T = inf{n : Sn = Sn−2, n ≥ 2}.

Is T a stopping time?

Answer: Yes. This is a stopping time since

{T = n} = {Sn = Sn−2}
⋂ ⋂

2≤k<n

Sk ̸= Sk−2

 .

Since {Sn = Sn−2} ∈ Fn and {Sk = Sk−2} ∈ Fk ⊂ Fn, the event {T = n} ∈ Fn.

Exercise 2. (15 points)

Let X and Y be random variables defined on common probability space (Ω,F ,P). Define

d(X,Y ) = E
(
log2

(
1 +

|X − Y |
1 + |X − Y |

))
.

a) First, we would like to confirm that d(X,Y ) is a distance metric. Show that d(X,Y ) satisfies
the triangle inequality. That is, d(X,Z) ≤ d(X,Y ) + d(Y,Z) for any X, Y , and Z.

Hint: the function f(x) = log2(1 + x) is sub-additive, e.g. f(x+ y) ≤ f(x) + f(y).
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Solution: For all x, y, z ∈ R we have

log2

(
1 +

|x− z|
1 + |x− z|

)
= log2

(
1 +

|x− y + y − z|
1 + |x− y + y − z|

)
≤ log2

(
1 +

|x− y|+ |y − z|
1 + |x− y|+ |y − z|

)
≤ log2

(
1 +

|x− y|
1 + |x− y|

+
|y − z|

1 + |y − z|

)
≤ log2

(
1 +

|x− y|
1 + |x− y|

)
+ log2

(
1 +

|y − z|
1 + |y − z|

)
where the first inequality follows from the fact that log2(1 + x) is an increasing function in x and
the last inequality follows from the hint. Now, since the inequality holds for X(ω), Y (ω), Z(ω) for
every ω ∈ Ω, we can take the expectation of both sides to get the desired result.

Next, we would like to check if convergence with respect to d(X,Y ) is equivalent to convergence in
probability (a distance metric with this property is sometimes called a Ky-Fan metric).

b) Let (Xn, n ≥ 1) be sequence of random variables and X be another random variable, all defined

on the same probability space (Ω,F ,P). Show that if Xn
P→

n→∞
X then limn→∞ d(Xn, X) = 0.

Solution: Fix ϵ > 0 and note that convergence in probability implies that

lim
n→∞

P({|Xn −X| ≥ ϵ}) = 0.

For simplicity, define g(x, y) = log2

(
1 + |x−y|

1+|x−y|

)
. We can write

d(Xn, X) = E
(
g(Xn, X)1|Xn−X|≥ϵ|

)
+ E

(
g(Xn, X)1|Xn−X|<ϵ

)
≤ E

(
1|Xn−X|≥ϵ|

)
+ log2

(
1 +

ϵ

1 + ϵ

)
= P ({|Xn −X| ≥ ϵ}) + log2

(
1 +

ϵ

1 + ϵ

)
Therefore

lim
n→∞

d(Xn, X) ≤ log2

(
1 +

ϵ

1 + ϵ

)
.

Since this is true for any ϵ, we can further take a limit as ϵ goes to zero to get the desired result.

c) Is the converse true? That is, if limn→∞ d(Xn, X) = 0 then Xn
P→

n→∞
X. If yes, prove the

statement. If no, provide a counter example.

Solution: Yes, the converse is also true. Fix ϵ > 0 and define ν = log2

(
1 + ϵ

1+ϵ

)
. Then
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P ({|Xn −X| ≥ ϵ}) = ν · 1
ν
E
(
1|Xn−X|≥ϵ|

)
≤ 1

ν
E
(
g(Xn, X)1|Xn−X|≥ϵ

)
≤ 1

ν
d(Xn, X).

Since for a fixed ϵ, ν is just a constant, we have that

lim
n→∞

P ({|Xn −X| ≥ ϵ}) = 1

ν
lim
n→∞

d(Xn, X) = 0.

Exercise 3. (25 points)

Recall that the moment-generating function of a random variable X is defined for every t ∈ R as

MX(t) = E
(
etX
)
.

a) Show that if X ∼ N (0, σ2), then

MX(t) = exp

(
1

2
t2σ2

)
.

Solution: For X ∼ N (0, σ2) we have

MX(t) = E(etX) =
1√
2πσ2

∫ +∞

−∞
etxe−

x2

2σ2 dx

=
1√
2πσ2

e
t2σ2

2

∫ +∞

−∞
e−

(x−σ2t)2

2σ2 dx

= exp

(
t2σ2

2

)
.

We now introduce the concept of sub-gaussianity. A random variable X is called sub-gaussian if,
for every t > 0,

MX(t) ≤ exp

(
1

2
t2η2

)
for some η ∈ R+. (Note that η2 need not be the variance of X!).

b) Show that if X ∼ U([−a, a]) for some a > 0, then X is sub-gaussian with η = a.

Hint: Recall that ex =
∑∞

n=0
xn

n! .

Solution: For X ∼ U([−a, a]) we have

MX(t) = E(etX) =

∫ a

−a

1

2a
etx dx =

1

2at
(eta − e−ta).
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Now note that, using the Taylor expansion of ex given in the hint, we can write

eta − e−ta =

∞∑
n=0

(ta)n

n!
−

∞∑
n=0

(−ta)n

n!

=
∞∑
n=0

(ta)2n+1

(2n+ 1)!

≤ ta
∞∑
n=0

(t2a2)n

2nn!

= ta exp

(
t2a2

2

)
where the inequality is due to the fact that (2n + 1)! ≥ 2nn!, and the last equality is due to the

Taylor expansion of exp
(
t2a2

2

)
. Hence, we conclude that

MX(t) ≤ 1

2
exp

(
t2a2

2

)
≤ exp

(
t2a2

2

)
.

c) Show that if X is sub-gaussian for some η ∈ R+, then for every t > 0,

P(|X| ≥ t) ≤ 2 exp

(
− t2

2η2

)
.

Solution: By the Chebyshev-Markov inequality with ψ(x) = esx, we have

P(X ≥ t) ≤ E(esX)

est
≤ exp

(
s2η2

2
− st

)
.

The optimal s (which can be found by taking the derivative of the right-hand side and putting it
equal to 0) is s = t

η2
, which we can substitute into the equation to get

P(X ≥ t) ≤ exp

(
t2

2η2

)
.

The same upper-bound can be obtained similarly for P(X ≤ −t), proving the result.

d) Prove the following generalization of Hoeffding’s inequality. Let Xi, i ∈ {1, 2, . . . , n} be inde-
pendent random variables, where for each i, Xi −E(Xi) is sub-gaussian for some ηi ∈ R+. Let also
Sn =

∑n
i=1Xi. Show that for every t > 0,

P(|Sn − E(Sn)| ≥ t) ≤ 2 exp

(
− t2

2
∑n

i=1 η
2
i

)
.

Solution: Note that, if Y1 and Y2 are two independent sub-gaussian random variables for some η1
and η2, then Y1 + Y2 is sub-gaussian with η2 = η21 + η22. In fact,

MY1+Y2(t) = E(et(Y1+Y2)) = E(etY1)E(etY2) ≤ exp

(
t2(η21 + η22)

2

)
.
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One can apply this result recursively to prove the same property for the sum of n independent ran-
dom variables. Then, the required result follows directly from part 3 with X =

∑n
i=1(Xi −E(Xi)).

e) Let Xi, i ∈ {1, 2, . . . , n} be sub-gaussian random variables with the same η ∈ R+. Show that

E
(
max

i
Xi

)
≤ η

√
2 lnn.

Hint: Start by rewriting E (maxiXi) =
1
tE (ln exp (tmaxiXi)).

Solution: Using the hint, we have

E
(
max

i
Xi

)
=

1

t
E
(
ln exp

(
tmax

i
Xi

))
≤ 1

t
lnE

(
exp

(
tmax

i
Xi

))
=

1

t
lnE

(
max

i
exp (tXi)

)
≤ 1

t
lnE

(
n∑

i=1

exp (tXi)

)

=
1

t
ln

(
n∑

i=1

E(exp(tXi))

)

≤ lnn

t
+
η2t

2

where the first inequality follows from Jensen’s inequality, and the last one is due to the fact that
the n random variables are sub-gaussian with the same η. The optimal t (obtained once again by

putting the derivative equal to 0) is t =

√
2 ln(n)

η . Substituing this value into the last equation gives

E
(
max

i
Xi

)
≤ 2η

√
lnn

2
= η

√
2 lnn.

Exercise 4. (25 points)

a) Let (Ω,F ,P) be a probability space and {Fn, n ∈ N} be a filtration on this space. Let A ∈ F
and define Yn = E (1A|Fn). Show that (Yn, n ∈ N) is a martingale with respect to the filtration
{Fn, n ∈ N}.

Solution: (Yn, n ∈ N) is a special case of the Doob’s martingale studied in class. The three
properties could be immediately checked:

• 0 ≤ Yn ≤ 1 for all n, so Yn is bounded, and therefore integrable for all n

• Yn if Fn- measurable by definition of conditional expectation

• E (Yn+1|Fn) = E (E (1A|Fn+1) |Fn) = E (1A|Fn) = Yn where the second to last equality is the
towering property of conditional expectation.
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b) Is it true that
Yn → Y∞, a.s.

for some random variable Y∞? Why or why not? Could we say something about convergence in
distribution to Y∞?

Solution: Yes, (Yn, n ∈ N) is a bounded martingale. Therefore it satisfies the conditions of the
martingale convergence theorem (v1) and converges almost surely to some Y∞. Convergence almost
surely implies convergence in distribution. So, this martingale also converges in distribution.

Next, we will use this martingale to prove Kolmogorov’s zero-one law. Let X0, X1, . . . be indepen-
dent random variables. Recall that the tail σ-field is

T =
∞⋂
n=0

Hn

where Hn = σ(Xn, Xn+1, . . . ) and assume A ∈ T . Our goal will be to prove that P(A) = 0 or
P(A) = 1.

c) Let Fn = σ(X1, . . . , Xn) and F∞ be the smallest σ-field that contains every Fn. A standard
measure-theoretic argument could be used to show that Y∞ = E (1A|F∞), but we will take it as a
fact here.

Assume Y∞ = E (1A|F∞). Show, furthermore, that for all A ∈ T ,

Y∞ := E (1A|F∞) = 1A.

Solution: Since A ∈ T we have that

A ∈ H0 = σ(X0, X1, . . . ) =

∞⋃
n=0

σ(X0, . . . , Xn) =

∞⋃
n=0

Fn ⊂ F∞

Then
E (1A|F∞) = 1A.

by definition of conditional expectation and the fact that 1A is F∞-measurable.

d) Show that
Yn := E (1A|Fn) = P(A).

Hint: How are the σ-fields T and Fn related to each other?

Solution: Recall from class that the σ-fields T and Fn are independent. This is because Hn+1

and Fn are independent, and T ⊂ Hn+1. Then

E (1A|Fn) = E (1A) = P(A).

e) Combine the ingredients above to prove Kolmogorov’s zero-one law.

Solution: By parts (a) and (b) we know that (Yn, n ∈ N) is a martingale that converges almost
surely to Y∞. By part (d) we know that Yn = P(A) is a constant sequence of random variables. By
part (c) we know that it converges to 1A which can only take values zero or one. Therefore, there
are two options. Either 1A = 0 a.s. or 1A = 1 a.s.. and, likewise, P(A) = 0 or P(A) = 1.
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