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Problem 1. A Bernstein-Vazirani algorithm modulo p (30pts)

Let x1, . . . , xn and a1, . . . , an, b be integers modulo p. Consider the function (x1, . . . , xn) 7→
f(x) = a1x1 + · · · + anxn + b = a · x + b with the sum taken modulo p. We suppose p is a

prime number.

The vector (a1, . . . , an) is “hidden” and the goal is to use a quantum circuit to determine it.

We assume that an Oracle computes the function for each entry. Take the following circuit:

|x1⟩

Uf

F...

|xn⟩

|y⟩

t = 1 t = 2t = 0

The Hilbert space associated with each wire is Cp and is spanned by states |0⟩, |1⟩, . . . , |p−1⟩.
The circuit is initialized in the state

|ψ0⟩ =
(

1

p
n
2

∑
(x1,...,xn)∈{0,...,p−1}n

|x1, . . . , xn⟩
)
⊗
(

1
√
p

p−1∑
y=0

e
2πiy
p |y⟩

)

and the Oracle acts as Uf (|x1, . . . , xn⟩ ⊗ |y⟩) = |x1, . . . , xn⟩ ⊗ |y + f(x1, . . . , xn)⟩ where

y + f(x1, . . . , xn) is taken modulo p. Moreover, we define the QFT:

F|x1, . . . , xn⟩ =
1

p
n
2

∑
(u1,...,un)∈{0,...,p−1}n

e
2πi
p

(x1u1+···+xnun) |u1, . . . , un⟩

1. Compute the state just after the Oracle. Explain in one sentence what is the “kick-back

phenomenon”.

2. Compute the state at the output of the circuit.

Hint: For p prime we have that these two sets are equal for any z ̸= 0:

{0mod p, zmod p, 2zmod p, 3zmod p, ..., (p− 1)zmod p} = {0, 1, 2, 3, ..., p− 1}.

3. Explain how one can determine (a1, . . . , an) by measuring the output and, in particular,

state what is the measurement basis. Can one determine b?
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Solution to problem 1: (total 30 pts)

1. (10pts)

|ψ1⟩ = Uf |ψ0⟩ = Uf

(
1

p
n
2

∑
x1,...,xn

|x1, . . . , xn⟩
)
⊗
(

1
√
p

∑
y

e
2πiy
p |y⟩

)

=
1

p
n
2

∑
x1,...,xn

Uf

(
|x1, . . . , xn⟩ ⊗

(
1
√
p

∑
y

e
2πiy
p |y⟩

))
=

=
1

p
n
2

∑
x1,...,xn

|x1, . . . , xn⟩ ⊗

(
1
√
p

∑
y

e
2πiy
p |y + f(x)⟩

)
=

=
1

p
n
2

∑
x1,...,xn

|x1, . . . , xn⟩ ⊗ e−
2πif(x)

p

(
1
√
p

∑
y

e
2πi(y+f(x))

p |y + f(x)⟩

)
=

y′≡(y+f(x)) mod p=y+f(x)
=

1

p
n
2

∑
x1,...,xn

|x1, . . . , xn⟩ ⊗ e−
2πif(x)

p

(
1
√
p

∑
y′

e
2πiy′

p |y′⟩

)
=

=

(
1

p
n
2

∑
x1,...,xn

e−
2πif(x)

p |x1, . . . , xn⟩

)
⊗

(
1
√
p

∑
y′

e
2πiy′

p |y′⟩

)
.

The kick-back phenomenon is a result of the circuit application where the information in the

(ancilla) second register becomes a relative phase in the first register.

2. (15pts) As the input state is separable and F is only applied to the n principal entries,

not to the ancilla one, we have:

F

(
1

p
n
2

∑
x1,...,xn

e−
2πif(x)

p |x1, . . . , xn⟩

)
=

=
1

p
n
2

∑
x∈{0,...,p−1}n

e−
2πif(x)

p

 1

p
n
2

∑
u∈{0,...,p−1}n

e
2πi
p

(x1u1+···+xnun) |u1, . . . , un⟩

 =

=
1

pn

∑
x∈{0,...,p−1}n

∑
u∈{0,...,p−1}n

e
2πi
p

(x1u1+···+xnun−f(x)) |u1, . . . , un⟩ =

=
1

pn

∑
x∈{0,...,p−1}n

∑
u∈{0,...,p−1}n

e
2πi
p

(u·x−a·x−b) |u1, . . . , un⟩ =

=
1

pn
e−

2πib
p

∑
u∈{0,...,p−1}n

 ∑
x∈{0,...,p−1}n

e
2πi
p

[(u−a)·x]

 |u1, . . . , un⟩ .
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Now, simplifying the coefficient:∑
x∈{0,...,p−1}n

e
2πi
p

[(u−a)·x] =
∑

x∈{0,...,p−1}n
e

2πi
p

[(u1−a1)x1] · . . . · e
2πi
p

[(un−an)xn] =

=

 ∑
x1∈{0,...,p−1}

e
2πi
p

[(u1−a1)x1]

 · . . . ·

 ∑
xn∈{0,...,p−1}

e
2πi
p

[(un−an)xn]

 =

=
∏

i=1...n

 ∑
xi∈{0,...,p−1}

e
2πi
p

[(ui−ai)xi]

 =
∏

i=1...n

 ∑
xi∈{0,...,p−1}

e
2πi
p

[((ui−ai) mod p)xi]


If ui−ai ̸≡ 0 mod p, set of {(ui−ai) ·0 mod p, (ui−ai) ·1 mod p, . . . , (ui−ai) ·(p−1) mod p}
makes a complete set of remainders {0, 1, . . . , p− 1} because p is prime. Then:∑

xi∈{0,...,p−1}

e
2πi
p

[((ui−ai) mod p)xi] =

=


∑

xi∈{0,...,p−1} e
2πi
p

·0 =
∑

xi∈{0,...,p−1} 1 = p, ui = ai∑
x′
i∈{0,...,p−1} e

2πi
p

x′
i =

1·
(
1−

(
e
2πi
p

)p)
1−e

2πi
p

= 0, ui ̸= ai

= p · 1 [ui = ai] .

Therefore: ∑
x∈{0,...,p−1}n

e
2πi
p

[(u−a)·x] =
∏

i=1...n

(p · 1 [ui = ai]) = pn1 [u = a] ,

and

F

 1

p
n
2

∑
x∈{0,...,p−1}n

e−
2πif(x)

p |x1, . . . , xn⟩

 =
1

pn
e−

2πib
p

∑
u∈{0,...,p−1}n

pn1 [u = a] · |u1, . . . , un⟩ =

= e−
2πib
p |a1, . . . , an⟩

All in all, the output state is:

|ψ2⟩ =
(
e−

2πib
p |a1, . . . , an⟩

)
⊗

(
1
√
p

∑
y

e
2πiy
p |y⟩

)
.

3. (5pts) States |0⟩, |1⟩, . . . , |p− 1⟩ can be presented as vectors in Cp:

|0⟩ =


1

0
...

0

 , |1⟩ =


0

1
...

0

 , . . . , |p− 1⟩ =


0
...

0

1

 .
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The computational basis is then |u1 . . . uny⟩ = |x1⟩⊗. . .⊗|un⟩⊗|y⟩, u1, . . . , un, y ∈ {0, . . . , p−
1} and we measure the first n entries in the same basis by using the set of projectors:

{|u1, . . . , un⟩⟨u1, . . . , un| such that ⊗ I | u1, . . . , un ∈ {0, . . . , p− 1}} ,

where I is identity matrix of size p × p and acts on the last entry. We obtain |a1, . . . , an⟩
with probability 1, as:

P (|u1, . . . , un⟩) = ⟨ψ2 | |u1, . . . , un⟩⟨u1, . . . , un| ⊗ I | ψ2⟩ =

=
∣∣∣e− 2πib

p

∣∣∣2 ⟨a1, . . . , an|u1, . . . , un⟩2 = {1, u = a,

0, u ̸= a

In the output, b is only present in the global phase e−
2πib
p which cannot be measured, no

matter what the basis.
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Problem 2. Quantum random walks on a one-dimensional line (40pts)

In this problem we look at a quantum random walk and compare it to the simplest classical

random walk.

Consider first a classical coin with two possible outcomes s = −1 (heads) or s = +1 (tail) each

with probability 1
2
. The position of a discrete classical random walk on a one dimensional

lattice is labelled by a natural integer x ∈ Z (thus x = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . ) and

evolves as follows:

• at time t = 0 the initial state is x0 = 0.

• for each t ∈ N we toss the coin and look at the outcome st = ±1 of the coin and update

the position as xt+1 = xt + st (coin tosses are independent and identically uniformly

distributed as indicated above).

1. Compute the probabilities of the outcomes for t = 0, 1, 2, 3 and complete this table:

. . . P [xt = −1] P [xt = 0] P [xt = 1] . . .

t = 0

...

t = 3

Now we define the quantum walk on the one dimensional line. Consider a qubit in C2 with

two orthonormal computational basis states | ↑⟩ =
(
1

0

)
, | ↓⟩ =

(
0

1

)
. This qubit plays the

role of the “coin”. The state of the walk belongs to another Hilbert space H spanned by

orthonormal states {|x⟩, x ∈ Z}. The state of the composite system coin+walk is denoted

by |ψ⟩ ∈ C2 ⊗H and evolves as follows:

• at time t = 0 the initial state is |ψ0⟩ = | ↑⟩ ⊗ |0⟩.

• for t ∈ N update the state as |ψt+1⟩ = S(H ⊗ I)|ψt⟩ where

H =
1√
2

(
1 1

1 −1

)
and S = | ↑⟩⟨↑ | ⊗

∑
x∈Z

|x+ 1⟩⟨x|+ | ↓⟩⟨↓ | ⊗
∑
x∈Z

|x− 1⟩⟨x|

Here H represents a coin “toss” and S the “shift” of the position of the walk on the

lattice.

2. Compute the state vectors |ψt⟩ for t = 0, 1, 2, 3.
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3. Suppose first that we observe the position of the walk at the final time t = 3. This

corresponds to do a measurement with the set of projectors {I ⊗ |x⟩⟨x|, x ∈ Z}.
Compute the resulting possible states |x⟩ and corresponding probabilities.

4. Similarly to above, compute also the resulting states and probabilities that would result

from measurement at times t = 0, 1, 2, and the complete the following table:

. . . P [xt = −1] P [xt = 0] P [xt = 1] . . .

t = 0

...

t = 3

5. Draw a circuit corresponding to the quantum walk and measurement at time t = 3.

6. Suppose we would do a measurement at each time step and update the state after each

measurement. Guess without calculations which of the above two tables of probabilities

you would obtain ? Give a short two sentence argument (no calculation).
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Solution to problem 2: (total 40pts)

1. (5pts)

P [xt = −3] P [xt = −2] P [xt = −1] P [xt = 0] P [xt = 1] P [xt = 2] P [xt = 3]

t = 0 0 0 0 1 0 0 0

t = 1 0 0 1
2

0 1
2

0 0

t = 2 0 1
4

0 1
2

0 1
4

0

t = 3 1
8

0 3
8

0 3
8

0 1
8

(For n ≥ 4, P [xt = ±n] = 0 for t = 0, 1, 2, 3.)

2. (15pts) Note that H| ↑⟩ = 1√
2
(| ↑⟩+ | ↓⟩) and H| ↓⟩ = 1√

2
(| ↑⟩ − | ↓⟩).

For t = 0, |ψ0⟩ = | ↑⟩ ⊗ |0⟩ by definition.

For t = 1:

|ψ1⟩ = S(H ⊗ I)|ψ0⟩ = S (H| ↑⟩ ⊗ I|0⟩)

=
1√
2

[
| ↑⟩⟨↑ | ⊗

∑
x∈Z

|x+ 1⟩⟨x|+ | ↓⟩⟨↓ | ⊗
∑
x∈Z

|x− 1⟩⟨x|

]
(| ↑⟩ ⊗ |0⟩+ | ↓⟩ ⊗ |0⟩) =

=
1√
2

(
| ↑⟩ ⊗

([∑
x∈Z

|x+ 1⟩⟨x|

]
|0⟩

)
+ | ↓⟩ ⊗

([∑
x∈Z

|x− 1⟩⟨x|

]
|0⟩

))

=
1√
2
(| ↑⟩ ⊗ |1⟩+ | ↓⟩ ⊗ | − 1⟩) .

For t = 2:

|ψ2⟩ = S(H ⊗ I)|ψ1⟩ =
1√
2
S (H| ↑⟩ ⊗ I|1⟩+H| ↓⟩ ⊗ I| − 1⟩)

=
1

2
S (| ↑⟩ ⊗ |1⟩+ | ↓⟩ ⊗ |1⟩+ | ↑⟩ ⊗ | − 1⟩ − | ↓⟩ ⊗ | − 1⟩)

=
1

2
(| ↑⟩ ⊗ |2⟩+ | ↓⟩ ⊗ |0⟩+ | ↑⟩ ⊗ |0⟩ − | ↓⟩ ⊗ | − 2⟩)

For t = 3:

|ψ3⟩ =S(H ⊗ I)|ψ2⟩ =

=
1

2
√
2
S(| ↑⟩ ⊗ |2⟩+ | ↓⟩ ⊗ |2⟩+ | ↑⟩ ⊗ |0⟩ − | ↓⟩ ⊗ |0⟩

+ | ↑⟩ ⊗ |0⟩+ | ↓⟩ ⊗ |0⟩ − | ↑⟩ ⊗ | − 2⟩+ | ↓⟩ ⊗ | − 2⟩) =

=
1

2
√
2
S(| ↑⟩ ⊗ |2⟩+ | ↓⟩ ⊗ |2⟩+ 2| ↑⟩ ⊗ |0⟩ − | ↑⟩ ⊗ | − 2⟩+ | ↓⟩ ⊗ | − 2⟩) =

=
1

2
√
2
(| ↑⟩ ⊗ |3⟩+ | ↓⟩ ⊗ |1⟩+ 2| ↑⟩ ⊗ |1⟩ − | ↑⟩ ⊗ | − 1⟩+ | ↓⟩ ⊗ | − 3⟩)

8



3. (10pts) Let a1, a2 ∈ {↑, ↓}, x1, x2 ∈ Z. Obviously,

(⟨a2| ⊗ ⟨x2|) (I ⊗ |x⟩⟨x|) (|a1⟩ ⊗ |x1⟩) = ⟨a2|a1⟩ · ⟨x2|x⟩ · ⟨x|x1⟩ = 1 [a1 = a2] ·1 [x1 = x2 = x] ,

and then, the probability of obtaining the walk |x⟩ is:

P [xt = s] = ⟨ψ3|I ⊗ |x⟩⟨x||ψ3⟩ =



1
8
, s = 3;

1
8
( 12︸︷︷︸

|↓⟩

+ 22︸︷︷︸
|↑⟩

) = 5
8
, s = 1;

1
8
, s = −1;

1
8
, s = −3;

0, otherwise.

That means the only possible walks are ±1,±3. The resulting table is:

P [xt = −3] P [xt = −2] P [xt = −1] P [xt = 0] P [xt = 1] P [xt = 2] P [xt = 3]

t = 0 0 0 0 1 0 0 0

t = 1 0 0 1
2

0 1
2

0 0

t = 2 0 1
4

0 1
2

0 1
4

0

t = 3 1
8

0 1
8

0 5
8

0 1
8

4. (8pts)

|↑⟩ H

S

H

S

H

S
|0⟩

5. (2pts) If a measurement is done at each time step it is as if the walk is reset at some

”classical position” at each time step and thus the moves will be exactly the classical

ones. Therefore one will find the first table (same as for the classical walk).
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Problem 3. Steane error correcting code (30pts)

Recall that the logical code words of the Steane code are

|0⟩Steane =
1√
8

{
|0000000⟩+ |1001101⟩+ |0101011⟩+ |0010111⟩

+ |0111100⟩+ |1011010⟩+ |1100110⟩+ |1110001⟩
}

and

|1⟩Steane =
1√
8

{
|1111111⟩+ |0110010⟩+ |1010100⟩+ |1101000⟩

+ |1000011⟩+ |0100101⟩+ |0011001⟩+ |0001110⟩
}
.

1. What is the length of this code ?

2. Give the most general form of a quantum codeword belonging to this code and give

the dimension of the subspace of quantum codewords.

3. Among the following 8 operators Z1Z2Z3Z7, Z2Z3Z4Z5, Z2Z3Z5Z6, Z2Z4Z6Z7 and

X1X2X3X7, X2X3X4X5, X2X3X5X6, X2X4X6X7 there are only 6 of them that form

the stabilizer group of the code. Say which of them form this stabilizer group and

justify your answer.

4. Suppose now that the original state α|0⟩Steane + β|1⟩Steane undergoes three types of

errors:

(a) a bit flip on the third qubit.

(b) a phase flip on the third qubit.

(c) a bit-phase flip on the third qubit.

Explain how the error and its type are detectable. Then explain how it can be corrected.

5. In the error correction process in the question above (for one qubit errors): explain

shortly in a few words what are the crucial properties that the stabilizers must satisfy?
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Solution to problem 3: (total 30pts)

1. (1pts) Length of the code is 7, as 7 qubits are used.

2. (2pts) The general form of a quantum codeword is:

|ψ⟩ = α|0⟩+ β|1⟩ =⇒ |ψSteane⟩ = α|0⟩Steane + β|1⟩Steane;

Dimension of the subspace spanned by codewords is 2, as codewords of type α|0⟩Steane+
β|1⟩Steane are lying in the Hilbert subspace of dimension 21.

3. (10pts) First solution (may be a bit long to check but simplest): Check for which op-

erators the eigenvalues of the Steane codewords are +1. One finds that one must ex-

clude Z2Z3Z5Z6 and X2X3X5X6 because for these two the eigenvalues of the Steane

codewords are −1. Then one must check that the remaining operators all mutually

commute by using XiZi = −ZiXi and XiZj = ZjXi if i ̸= j.

Second solution (connecting to CSS theory): We can notice that |0⟩Steane, |1⟩Steane can
be represented as:

|0⟩Steane =
1√
|C|

∑
y⃗∈C

|y⃗⟩; |1⟩Steane =
1√
|C|

∑
y⃗∈C

|1111111 + y⃗⟩;

where C = span ⟨u⃗1, u⃗2, u⃗3⟩ , u⃗1 = 1110001, u⃗2 = 0111100, u⃗3 = 0101011. Note that:

• Z1Z2Z3Z7, Z2Z3Z4Z5, Z2Z4Z6Z7 correspond to the application of Z to qubits in

positions of ones in those vectors, i.e. Z1Z2Z3Z7|x⃗⟩ = (−1)x⃗·u⃗1|x⃗⟩, same for others.

• X1X2X3X7, X2X3X4X5, X2X4X6X7 – of X, i.e.X1X2X3X7|x⃗⟩ = |x⃗ + u⃗1⟩, same

for others.

This means that |0⟩Steane and |1⟩Steane are the eigenstates of those operators with eigen-

value 1, which means they are stabilizers. Indeed, for example:

X1X2X3X7|0⟩Steane =
1

2

∑
y⃗∈span⟨u⃗2,u⃗3⟩

X1X2X3X7

(
1√
2
(|y⃗⟩+ |y⃗ + u⃗1⟩)

)
=

=
1

2

∑
y⃗∈span⟨u⃗2,u⃗3⟩

1√
2
(|y⃗⟩+ |y⃗ + u⃗1⟩) = |0⟩Steane

and

Z1Z2Z3Z7|0⟩Steane =
1

2

∑
y⃗∈span⟨u⃗2,u⃗3⟩

Z1Z2Z3Z7

(
1√
2
(|y⃗⟩+ |y⃗ + u⃗1⟩)

)
=

=
1

2

∑
y⃗∈span⟨u⃗2,u⃗3⟩

(−1)y⃗·u⃗1
1√
2
(|y⃗⟩+ |y⃗ + u⃗1⟩)

u⃗2·u⃗1=0, u⃗3·u⃗1=0
= |0⟩Steane

For Z2Z3Z5Z6, X2X3X5X6, this is not true.
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4. (10pts) The errors can be represented as X3|ψSteane⟩ (bit flip), Z3|ψSteane⟩ (phase flip),
X3Z3|ψSteane⟩ (bit-phase flip).

We will use that the operations on different qubits commute and X3Z3 = −Z3X3.

For example, if we have phase flip and apply stabilizer X1X2X3X7, we obtain that

corrupted code Z3|ψSteane⟩ is an eigenstate with eigenvalue −1 :

X1X2X3X7 (Z3|ψSteane⟩) = −Z3 (X1X2X3X7|ψSteane⟩) = − (Z3|ψSteane⟩) .

Similarly, we can obtain:

• bit-flip: measurement of stabilizers Z1Z2Z3Z7, Z2Z3Z4Z5 will give -1, others 1. If

we identify it, we apply X3 to the channel output.

• phase-flip: measurement of stabilizers X1X2X3X7, X2X3X4X5 will give -1, others

1. If we identify it, we apply Z3 to the channel output.

• bit-phase flip: measurement of stabilizers Z1Z2Z3Z7, Z2Z3Z4Z5, X1X2X3X7,

X2X3X4X5 will give -1, others 1. If we identify it, we apply X3Z3 to the channel

output.

5. (7pts) Stabilizers can be constructed as products of Pauli matrices Xi, Zi. The code-

words should be the eigenstates of stabilizers with eigenvalue 1 and stabilizers must be

commutative so we can make the simultaneous measurement of them.
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