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Problem 1. (6 pts)

Figure 1: A simple quantum circuit

Consider the quantum circuit in Figure 1,

1. (1pt) Calculate the state at t1.

2. (2pt) Calculate the state at t2.

3. (1pt) Is the state entangled at t1?

4. (1pt) Is the state entangled at t2?

5. (1pt) Suggest a simpler circuit (with less gates) that prepares the same state at t2 from

the same starting state |0⟩ ⊗ |0⟩.
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Solution to problem 1:

1. (1pt) |ψ⟩t1 =
1√
2
(|00⟩+ |11⟩.

2. (1pt) |ψ⟩t2 = |0⟩ ⊗ ( 1√
2
(|0⟩+ |1⟩).

3. (1pt) Yes, |ψ⟩t1 is the maximally entangled state and cannot be expressed as the tensor

product of two states.

4. (1pt) No, it is a product state.

5. (1pt) A circuit which applies the Hadamard gate to the second qubit will produce the

same state at t2 when initialized with |0⟩ ⊗ |0⟩.
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Problem 2. The U-Test (8 pts)

1. (4 pts) Consider the ”control-U test” for some unitary operator U : C2⊗C2 → C2⊗C2:

c
|0⟩ H H

|ψ⟩ U

Given the initial state |ψ⟩ ∈ C2 ⊗ C2 and a measurement stored in a classical bit c,

show that we have the following probability:

p0 = P(c = 0) =
1

2
(1 + ℜ(⟨ψ|U |ψ⟩))

2. (2 pts) Say U is the swap operator such that for any |u⟩ ⊗ |v⟩ ∈ C2 × C2, we have

U |u⟩ ⊗ |v⟩ = |v⟩ ⊗ |u⟩.

(a) What is p0 for |ψ⟩ = |u⟩ ⊗ |v⟩? Give the solution in terms of ⟨u|v⟩.

(b) What is p0 for |ψ⟩ = 1√
2
(|00⟩+ |11⟩)? (Give the numerical value of p0)

3. (2 pts) Say U = H ⊗H.

(a) What is p0 for |ψ⟩ = |u⟩ ⊗ |v⟩? (Give the numerical value of p0)

(b) What is p0 for |ψ⟩ = 1√
2
(|00⟩+ |11⟩)? (Give the numerical value of p0)
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Solution to problem 2:

1.

ψ1 = (H ⊗ I)CU((H |0⟩)⊗ |ψ⟩) = 1√
2
(H ⊗ I)CU(|0⟩ ⊗ |ψ⟩+ |1⟩ ⊗ |ψ⟩) (1)

=
1√
2
(H ⊗ I)(|0⟩ ⊗ |ψ⟩+ |1⟩ ⊗ U |ψ⟩) (2)

=
1

2
(|0⟩+ |1⟩)⊗ |ψ⟩+ 1

2
(|0⟩ − |1⟩)⊗ U |ψ⟩ (3)

=
1

2
|0⟩ ⊗ (|ψ⟩+ U |ψ⟩) + 1

2
|1⟩ ⊗ (|ψ⟩ − U |ψ⟩) (4)

So:

p0 = ⟨ψ1| (|0⟩ ⟨0| ⊗ I) |ψ1⟩ (5)

=
1

4
(⟨ψ|+ ⟨ψ|U †)(|ψ⟩+ U |ψ⟩) (6)

=
1

4
(⟨ψ|ψ⟩+ ⟨ψ|U |ψ⟩+ ⟨ψ|U † |ψ⟩+ ⟨ψ|U †U |ψ⟩) (7)

=
1

2
(1 + ℜ(⟨ψ|U |ψ⟩)) (8)

2. for the swap operator:

(a) U |u⟩ ⊗ |v⟩ = |v⟩ ⊗ |u⟩ so:

p0 =
1

2

(
1 + ∥ ⟨u|v⟩ ∥2

)
(b) for the bell state, U |ψ⟩ = |ψ⟩ so p0 = 1.

3. for the double Hadamard gate:

(a) if |ψ⟩ = |u⟩⊗ |v⟩ for u, v ∈ {0, 1} , then (H ⊗H) |ψ⟩ = 1
2
(|0⟩+ (−1)u |1⟩)⊗ (|0⟩+

(−1)v |1⟩) so:

p0 ∈
{
3

4
,
1

4

}
(b) for the bell state, we find:

(H ⊗H) |ψ⟩ = 1

2
√
2
[(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩) + (|0⟩ − |1⟩)⊗ (|0⟩ − |1⟩)]

=
1√
2
(|00⟩+ |11⟩) = |ψ⟩

So we find again p0 = 1
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Problem 3. Circuit identities (16 pts).

1. (4pts) Show that:

2. (4pts) Show that:

3. (4pts) Let X =

(
0 1

1 0

)
and CNOT the control-not gate with the first qubit as the

control bit and the second as the target bit. Consider the identity:

CNOT(X ⊗ I)CNOT = X ⊗X

As above, draw the equality in terms of circuits. Then, prove the identity.

4. (4pts) Let Z =

(
1 0

0 −1

)
and CNOT the control-not gate with the first qubit as the

control bit and the second as the target bit. Consider the identity:

CNOT(Z ⊗ I)CNOT = Z ⊗ I

Draw the equality in terms of circuits. Prove the identity.
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Solution to problem 3:

1. We check the identity on computational basis states. By linearity its then true in

general. If x is the control bit:

CZ|x, y⟩ = |x⟩ ⊗ Zx|y⟩ = |x⟩ ⊗ (−1)yx|y⟩ = (−1)xy|x, y⟩

If y is the control bit

CZ|x, y⟩ = Zy|x, y⟩ = (−1)xy|x, y⟩

so we have equality.

2. We have

H ⊗H|x, y⟩ = 1√
2
(|0⟩+ (−1)x|1⟩)⊗ 1√

2
(|0⟩+ (−1)y|1⟩)

=
1

2
(|00⟩+ (−1)y|01⟩+ (−1)x|10⟩+ (−1)x(−1)y|11⟩)

Then

CNOT(H ⊗H)|x, y⟩ = 1

2
(|00⟩+ (−1)y|01⟩+ (−1)x|11⟩+ (−1)x(−1)y|10⟩)

Now lets compute

(H ⊗H)|x⊕ y, y⟩ = 1

2
(|0⟩+ (−1)x⊕y|1⟩)⊗ (|0⟩+ (−1)y|1⟩)

=
1

2
(|00⟩+ (−1)y|01⟩+ (−1)x|10⟩+ (−1)x(−1)y|11⟩)

Putting together the last two results we find

(H ⊗H)CNOT(H ⊗H)|x, y⟩ = |x⊕ y, y⟩

which is the asked identity.

3. We denote by x̄ and ȳ the negations of x and y. We have

CNOT(X⊗I)CNOT|x, y⟩ = CNOT(X⊗I)|x, y⊕x⟩ = CNOT|x̄, y⊕x⟩ = |x̄, ȳ⟩ = X⊗X|xy⟩

where we used in the next-to-last equality y ⊕ x⊕ x̄ = y ⊕ 1 = ȳ.

4. For the last identity we have

CNOT(Z⊗I)CNOT|x, y⟩ = CNOT(Z⊗I)|x, y⊕x⟩ = (−1)xCNOT|x, y⊕x⟩ = (Z⊗I)|x, y⟩
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Problem 4. Hamiltonian simulation (12 pts)

For any N ×N matrix M the exponential is defined as

eM =
∞∑
k=0

Mk

k!
.

We admit the following two properties (without proof):

1. If λ is an eigenvalue of M then eλ is an eigenvalue of eM .

2. If U is a unitary N ×N matrix then UeMU † = eUMU†
.

Let X =

(
0 1

1 0

)
, Z =

(
1 0

0 −1

)
, and ∆t is a real number. Let A = X ⊗X ⊗X. We want

to construct a circuit that computes e−i∆tA|ψ⟩ where |ψ⟩ ∈ (C2)
⊗3

is given.

1. (2pts) Find a unitary matrix U such that (U ⊗ U ⊗ U)A(U † ⊗ U † ⊗ U †) = A′ where

A′ = Z ⊗ Z ⊗ Z.

2. (6pts) Show that the following circuit computes e−i∆tA′ |ψ⟩ ⊗ |0⟩.
Hint: First take a computational basis state |ψ⟩ = |x, y, z⟩ where x, y, z ∈ {0, 1}. Then
justify the statement for general |ψ⟩.

3. (4pts) Deduce and draw a circuit that computes e−i∆tA|ψ⟩ ⊗ |0⟩ when |ψ⟩ ⊗ |0⟩ is the
input.

4. (Bonus question 2pts) Prove the preliminary statements (1) and (2) at the beginning

of the problem.
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Solution to problem 4:

1. We know (or can check) that HXH = Z where H is the Hadamard matrix. Thus

(H ⊗H ⊗H)A(H ⊗H ⊗H) = A′. Since H is unitary and with H = H† we have that

U = H.

2. Since any state can be decomposed on the computational basis |ψ⟩ =
∑

x,y,z Cxyz|xyz⟩
by linearity it suffices compute the output for a computational basis state |ψ⟩ = |xyz⟩.
After the first series of control-not gates we have the state |xyz⟩ ⊗ |x ⊕ y ⊕ z⟩. Now

we act with ei∆tZ on the last qubit. This gives

|xyz⟩ ⊗ ei∆tZ |x⊕ y ⊕ z⟩ = |xyz⟩ ⊗ ei∆t(−1)x⊕y⊕z |x⊕ y ⊕ z⟩ (9)

= e−i∆t(−1)x(−1)y(−1)z |xyz⟩ ⊗ |x⊕ y ⊕ z⟩ (10)

Now we act with the last three control-not gates and find the output state

e−i∆t(−1)x(−1)y(−1)z |xyz⟩ ⊗ 0⟩

This is precisely equal to

e−i∆tZ⊗Z⊗Z |xyz⟩ ⊗ 0⟩

3. We have

e−i∆tA|ψ⟩ ⊗ |0⟩ = (H ⊗H ⊗H)e−i∆tA′
(H ⊗H ⊗H)|ψ⟩ ⊗ |0⟩

Thus the circuit is obtained by appending H gates at the beginning and end of the

first three lines (picture).

4. Bonus question (2pts). For the first statement we first notice thatM |ϕ⟩ = λ|ϕ⟩ implies

Mk|ϕ⟩ = λ|ϕ⟩. Then act on |ϕ⟩ with the expansion of the exponential, and resum, to

get the result.

For the second statement, expanding the exponential we have

(U ⊗ U ⊗ U)e−i∆tA(U † ⊗ U † ⊗ U †) =
∞∑
n=1

(−i∆t)n

n!
(U ⊗ U ⊗ U)An(U † ⊗ U † ⊗ U †)

(11)

=
∞∑
n=1

(−i∆t)n

n!
A′n (12)

= ei∆tA′
(13)

where we used

(U⊗U⊗U)A2(U †⊗U †⊗U †) = (U⊗U⊗U)A(U †⊗U †⊗U †)(U⊗U⊗U)A(U †⊗U †⊗U †) = A′2

by unitarity of U , and similarly for n > 2.
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