ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

School of Computer and Communication Sciences

Quantum Computation Assignment date: July 8th, 2022, 15:15
Spring 2022 Due date: July 8th, 2022, 18:15

CS 308 — Final Exam — room AAC 231

There are 4 problems. Use scratch paper if needed to figure out the solution. Write your
final answer in the indicated space. A cheat sheet with 2 A4 pages is allowed. No electronic
devices allowed. Good luck!

Name:

Section:

Sciper No.:
Problem 1 /6
Problem 2 /8
Problem 3 / 16
Problem 4 / 12
Total /42




Problem 1. (6 pts)
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Figure 1: A simple quantum circuit

Consider the quantum circuit in Figure 1,

—_

1pt) Calculate the state at t;.

2pt) Calculate the state at t.

w

1pt) Is the state entangled at t57?

ot

Ipt) Suggest a simpler circuit (with less gates) that prepares the same state at t5 from

-
-
. (1pt) Is the state entangled at ¢;7
- (
-
the same starting state |0) ® |0).



Solution to problem 1:

L (Ipt) [v),, = J5(l00) + [11).

2. (Ipt) [¢), = 10) ® (5(10) +[1))-

3. (Ipt) Yes, [¢),, is the maximally entangled state and cannot be expressed as the tensor
product of two states.

4. (1pt) No, it is a product state.

5. (Ipt) A circuit which applies the Hadamard gate to the second qubit will produce the
same state at to when initialized with |0) ® |0).



Problem 2. The U-Test (8 pts)

1. (4 pts) Consider the ”control-U test” for some unitary operator U : C2@ C* — C?*®@C?:

0) —#]
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[¥) U

Given the initial state |¢)) € C? ® C? and a measurement stored in a classical bit c,
show that we have the following probability:

po=Plc=0) =5 (1 +R{YIU[¥)))

N —

2. (2 pts) Say U is the swap operator such that for any |u) @ |v) € C?* x C?, we have
Ulu) ® |v) = |v) ® |u).
(a) What is pg for |¢p) = |u) ® |v)? Give the solution in terms of (u|v).

(b) What is pg for |¢) = \%(\OO} +]11))? (Give the numerical value of py)

3. (2 pts) SayU=H® H.

(a) What is pg for |[¢) = |u) ® |v)? (Give the numerical value of py)

(b) What is py for |¢) = \%(|OO> +[11))? (Give the numerical value of pg)



Solution to problem 2:

1.
o1 = (H & DCU((H|0) @ |¢)) = %(H enCU(0 @Y+ el ()
=SSO0 )+ 1) SV ) )
= 210} + 1) ©1) + <\o> el @
= 210y ® () + U ) + 510 @ (1) - Ul (@
So:
po = ] (10) (0] © 1)) o)
= L1+ @IUN(9) + U ) (0
= i«wlw + WU ) + (U [) + U [)) (7)
= SO+ REWIU [)) 0
9. for the swap operator:
(a) Uy @ 0) = o} @ Ju) 50
po=5 (L+ Il {ulo) IP)
(b) for the bell state, U |¢) = |¢) so po = 1.
3. for the double Hadamard gate:
@) H19) =10 1) o € 0,1, then (1 1)) =500+ (1 )@ 01+

E31
DPo 11

(b) for the bell state, we find:

(H®H) ) =

= E(|00> +11) = [4)

So we find again py =1

2f[(IO>+|1>) (10) + 1) + (|0) = 1)) @

(10) = 1))



Problem 3. Circuit identities (16 pts).

1. (4pts) Show that:

@

— 7
2. (4pts) Show that:

1
3. (4pts) Let X = <(1) 0) and CNOT the control-not gate with the first qubit as the

control bit and the second as the target bit. Consider the identity:
CNOT(X ® I)CNOT = X ® X

As above, draw the equality in terms of circuits. Then, prove the identity.

4. (4pts) Let Z = ((1) 0

1) and CNOT the control-not gate with the first qubit as the

control bit and the second as the target bit. Consider the identity:
CNOT(Z®I)CNOT=2Z®1I

Draw the equality in terms of circuits. Prove the identity.



Solution to problem 3:

1. We check the identity on computational basis states. By linearity its then true in
general. If x is the control bit:

CZlx,y) = |r) @ Z%|y) = |v) © (=1)*|y) = (=1)"|z,y)

If y is the control bit
OZ|I,y> = Zylfl,’7y> - (_1)$y|xay>

so we have equality.

2. We have
H Hlz,y) = %om IO %um T+ (=1)|1))
= 100} + (~1)2]01) + (~1)7[10) + (~1)*(~1)*[11)
Then

CNOT(H ® H)l,) = (100) + (~1)"J01) + (~1)7[11) + (~1)*(~1)*]10))
Now lets compute
(H o H)la®y,5) = 5(0) + (~1)"1) ® (0) + (~1)*]1))
= 2(100) + (~1)2]01) + (~1)7]10) + (~1)*(~1)*[11)
Putting together the last two results we find
(H © H)ONOT(H @ H)|r,y) = |+ & 1,3)

which is the asked identity.

3. We denote by = and gy the negations of x and y. We have
CNOT(X®I)CNOT|z,y) = CNOT(X®I)|z,yPzx) = CNOT|z, ydx) = |7,7) = X@X|2y)
where we used in the next-to-last equality ydxrdzr =y D1 =14.

4. For the last identity we have

CNOT(Z®I)CNOT|z,y) = CNOT(Z&I)|z,ydz) = (—1)*CNOT|z, ydz) = (Z&1)|z,y)



Problem 4. Hamiltonian simulation (12 pts)

For any N x N matrix M the exponential is defined as

We admit the following two properties (without proof):

1. If X is an eigenvalue of M then e is an eigenvalue of eM.

2. If U is a unitary N x N matrix then UeMUT = VMU,

Let X = <(1) é), Z = <(1) 01), and At is a real number. Let A = X ® X ® X. We want

to construct a circuit that computes e~*2%4|¢)) where 1) € (C2)*° is given.

1. (2pts) Find a unitary matrix U such that (U ® U @ U)A(U' @ Ut @ UT) = A" where
A=77Ix® 7.

2. (6pts) Show that the following circuit computes e "4 |¢)) @ |0).
Hint: First take a computational basis state |¢)) = |z,y, z) where x,y, z € {0,1}. Then
justify the statement for general |1)).
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3. (4pts) Deduce and draw a circuit that computes e*A*4|)) ® |0) when [¢) @ |0) is the
input.
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4. (Bonus question 2pts) Prove the preliminary statements (1) and (2) at the beginning
of the problem.



Solution to problem 4:

1. We know (or can check) that HXH = Z where H is the Hadamard matrix. Thus
(H® H® H)A(H® H® H) = A’. Since H is unitary and with H = HT we have that
U=H.

2. Since any state can be decomposed on the computational basis [¢)) = >~ Cyy.|ry2)
by linearity it suffices compute the output for a computational basis state |¢) = |xyz).
After the first series of control-not gates we have the state |zyz) ® |z @ y @ z). Now

we act with e***Z on the last qubit. This gives
wyz) @ 27w @y @ 2) = |ayz) @ AT @y @ 2) (9)
= I gy @ e oy @ 2) (10)

Now we act with the last three control-not gates and find the output state

This is precisely equal to
efiAtZ®Z®Z|xyZ> ® O)

3. We have
A ®10) = (H® H® H)e " (H® H® H)|ib) @ |0)

Thus the circuit is obtained by appending H gates at the beginning and end of the
first three lines (picture).

4. Bonus question (2pts). For the first statement we first notice that M|¢) = A|¢) implies
MP¥|¢) = A|¢). Then act on |¢) with the expansion of the exponential, and resum, to

get the result.

For the second statement, expanding the exponential we have

o0

UeUaU)e M (UTeU oU)=>" #(U QUQU)A"(UT @ Ut @ UT)
" (11)
= ; #A’” (12)
= et (13)
where we used
(UeUeU)A2(UteUTeU) = (UsUeU)A(UteUTeUN (UeUeU)A(UTeUTeU) = A”

by unitarity of U, and similarly for n > 2.



