ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE School of Computer and Communication Sciences

CS 308 - Final Exam - room AAC 231

There are 4 problems. Use scratch paper if needed to figure out the solution. Write your final answer in the indicated space. A cheat sheet with 2 A4 pages is allowed. No electronic devices allowed. Good luck!

Name: \qquad
Section: \qquad
Sciper No.: \qquad

Problem 1	$/ 6$
Problem 2	$/ 8$
Problem 3	$/ 16$
Problem 4	$/ 12$
Total	$/ 42$

Problem 1. (6 pts)

Figure 1: A simple quantum circuit

Consider the quantum circuit in Figure 1,

1. (1pt) Calculate the state at t_{1}.
2. (2pt) Calculate the state at t_{2}.
3. (1pt) Is the state entangled at t_{1} ?
4. (1pt) Is the state entangled at t_{2} ?
5. (1pt) Suggest a simpler circuit (with less gates) that prepares the same state at t_{2} from the same starting state $|0\rangle \otimes|0\rangle$.

Solution to problem 1:

1. (1pt) $|\psi\rangle_{t_{1}}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle$.
2. (1pt) $|\psi\rangle_{t_{2}}=|0\rangle \otimes\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right.$.
3. (1pt) Yes, $|\psi\rangle_{t_{1}}$ is the maximally entangled state and cannot be expressed as the tensor product of two states.
4. (1pt) No, it is a product state.
5. (1pt) A circuit which applies the Hadamard gate to the second qubit will produce the same state at t_{2} when initialized with $|0\rangle \otimes|0\rangle$.

Problem 2. The U-Test (8 pts)

1. (4 pts) Consider the "control-U test" for some unitary operator $U: \mathbb{C}^{2} \otimes \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} \otimes \mathbb{C}^{2}$:

Given the initial state $|\psi\rangle \in \mathbb{C}^{2} \otimes \mathbb{C}^{2}$ and a measurement stored in a classical bit c, show that we have the following probability:

$$
p_{0}=\mathcal{P}(c=0)=\frac{1}{2}(1+\Re(\langle\psi| U|\psi\rangle))
$$

2. (2 pts) Say U is the swap operator such that for any $|u\rangle \otimes|v\rangle \in \mathbb{C}^{2} \times \mathbb{C}^{2}$, we have $U|u\rangle \otimes|v\rangle=|v\rangle \otimes|u\rangle$.
(a) What is p_{0} for $|\psi\rangle=|u\rangle \otimes|v\rangle$? Give the solution in terms of $\langle u \mid v\rangle$.
(b) What is p_{0} for $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$? (Give the numerical value of p_{0})
3. (2 pts) Say $U=H \otimes H$.
(a) What is p_{0} for $|\psi\rangle=|u\rangle \otimes|v\rangle$? (Give the numerical value of p_{0})
(b) What is p_{0} for $|\psi\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$? (Give the numerical value of p_{0})

Solution to problem 2:
1.

$$
\begin{align*}
\psi_{1}=(H \otimes I) C U((H|0\rangle) \otimes|\psi\rangle) & =\frac{1}{\sqrt{2}}(H \otimes I) C U(|0\rangle \otimes|\psi\rangle+|1\rangle \otimes|\psi\rangle) \tag{1}\\
& =\frac{1}{\sqrt{2}}(H \otimes I)(|0\rangle \otimes|\psi\rangle+|1\rangle \otimes U|\psi\rangle) \tag{2}\\
& =\frac{1}{2}(|0\rangle+|1\rangle) \otimes|\psi\rangle+\frac{1}{2}(|0\rangle-|1\rangle) \otimes U|\psi\rangle \tag{3}\\
& =\frac{1}{2}|0\rangle \otimes(|\psi\rangle+U|\psi\rangle)+\frac{1}{2}|1\rangle \otimes(|\psi\rangle-U|\psi\rangle) \tag{4}
\end{align*}
$$

So:

$$
\begin{align*}
p_{0} & =\left\langle\psi_{1}\right|(|0\rangle\langle 0| \otimes I)\left|\psi_{1}\right\rangle \tag{5}\\
& =\frac{1}{4}\left(\langle\psi|+\langle\psi| U^{\dagger}\right)(|\psi\rangle+U|\psi\rangle) \tag{6}\\
& =\frac{1}{4}\left(\langle\psi \mid \psi\rangle+\langle\psi| U|\psi\rangle+\langle\psi| U^{\dagger}|\psi\rangle+\langle\psi| U^{\dagger} U|\psi\rangle\right) \tag{7}\\
& =\frac{1}{2}(1+\Re(\langle\psi| U|\psi\rangle)) \tag{8}
\end{align*}
$$

2. for the swap operator:
(a) $U|u\rangle \otimes|v\rangle=|v\rangle \otimes|u\rangle$ so:

$$
p_{0}=\frac{1}{2}\left(1+\|\langle u \mid v\rangle\|^{2}\right)
$$

(b) for the bell state, $U|\psi\rangle=|\psi\rangle$ so $p_{0}=1$.
3. for the double Hadamard gate:
(a) if $|\psi\rangle=|u\rangle \otimes|v\rangle$ for $u, v \in\{0,1\}$, then $(H \otimes H)|\psi\rangle=\frac{1}{2}\left(|0\rangle+(-1)^{u}|1\rangle\right) \otimes(|0\rangle+$ $\left.(-1)^{v}|1\rangle\right)$ so:

$$
p_{0} \in\left\{\frac{3}{4}, \frac{1}{4}\right\}
$$

(b) for the bell state, we find:

$$
\begin{aligned}
(H \otimes H)|\psi\rangle & =\frac{1}{2 \sqrt{2}}[(|0\rangle+|1\rangle) \otimes(|0\rangle+|1\rangle)+(|0\rangle-|1\rangle) \otimes(|0\rangle-|1\rangle)] \\
& =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=|\psi\rangle
\end{aligned}
$$

So we find again $p_{0}=1$

Problem 3. Circuit identities (16 pts).

1. (4pts) Show that:

2. (4pts) Show that:

3. (4pts) Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and CNOT the control-not gate with the first qubit as the control bit and the second as the target bit. Consider the identity:

$$
\operatorname{CNOT}(X \otimes I) \mathrm{CNOT}=X \otimes X
$$

As above, draw the equality in terms of circuits. Then, prove the identity.
4. (4pts) Let $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and CNOT the control-not gate with the first qubit as the control bit and the second as the target bit. Consider the identity:

$$
\mathrm{CNOT}(Z \otimes I) \mathrm{CNOT}=Z \otimes I
$$

Draw the equality in terms of circuits. Prove the identity.

Solution to problem 3:

1. We check the identity on computational basis states. By linearity its then true in general. If x is the control bit:

$$
C Z|x, y\rangle=|x\rangle \otimes Z^{x}|y\rangle=|x\rangle \otimes(-1)^{y x}|y\rangle=(-1)^{x y}|x, y\rangle
$$

If y is the control bit

$$
C Z|x, y\rangle=Z^{y}|x, y\rangle=(-1)^{x y}|x, y\rangle
$$

so we have equality.
2. We have

$$
\begin{aligned}
H \otimes H|x, y\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{y}|1\rangle\right) \\
& =\frac{1}{2}\left(|00\rangle+(-1)^{y}|01\rangle+(-1)^{x}|10\rangle+(-1)^{x}(-1)^{y}|11\rangle\right)
\end{aligned}
$$

Then

$$
\operatorname{CNOT}(H \otimes H)|x, y\rangle=\frac{1}{2}\left(|00\rangle+(-1)^{y}|01\rangle+(-1)^{x}|11\rangle+(-1)^{x}(-1)^{y}|10\rangle\right)
$$

Now lets compute

$$
\begin{aligned}
(H \otimes H)|x \oplus y, y\rangle & =\frac{1}{2}\left(|0\rangle+(-1)^{x \oplus y}|1\rangle\right) \otimes\left(|0\rangle+(-1)^{y}|1\rangle\right) \\
& =\frac{1}{2}\left(|00\rangle+(-1)^{y}|01\rangle+(-1)^{x}|10\rangle+(-1)^{x}(-1)^{y}|11\rangle\right)
\end{aligned}
$$

Putting together the last two results we find

$$
(H \otimes H) \operatorname{CNOT}(H \otimes H)|x, y\rangle=|x \oplus y, y\rangle
$$

which is the asked identity.
3. We denote by \bar{x} and \bar{y} the negations of x and y. We have
$\operatorname{CNOT}(X \otimes I) \mathrm{CNOT}|x, y\rangle=\operatorname{CNOT}(X \otimes I)|x, y \oplus x\rangle=\operatorname{CNOT}|\bar{x}, y \oplus x\rangle=|\bar{x}, \bar{y}\rangle=X \otimes X|x y\rangle$ where we used in the next-to-last equality $y \oplus x \oplus \bar{x}=y \oplus 1=\bar{y}$.
4. For the last identity we have
$\operatorname{CNOT}(Z \otimes I) \operatorname{CNOT}|x, y\rangle=\operatorname{CNOT}(Z \otimes I)|x, y \oplus x\rangle=(-1)^{x} \mathrm{CNOT}|x, y \oplus x\rangle=(Z \otimes I)|x, y\rangle$

Problem 4. Hamiltonian simulation (12 pts)
For any $N \times N$ matrix M the exponential is defined as

$$
e^{M}=\sum_{k=0}^{\infty} \frac{M^{k}}{k!}
$$

We admit the following two properties (without proof):

1. If λ is an eigenvalue of M then e^{λ} is an eigenvalue of e^{M}.
2. If U is a unitary $N \times N$ matrix then $U e^{M} U^{\dagger}=e^{U M U^{\dagger}}$.

Let $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and Δt is a real number. Let $A=X \otimes X \otimes X$. We want to construct a circuit that computes $e^{-i \Delta t A}|\psi\rangle$ where $|\psi\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes 3}$ is given.

1. (2pts) Find a unitary matrix U such that $(U \otimes U \otimes U) A\left(U^{\dagger} \otimes U^{\dagger} \otimes U^{\dagger}\right)=A^{\prime}$ where $A^{\prime}=Z \otimes Z \otimes Z$.
2. (6pts) Show that the following circuit computes $e^{-i \Delta t A^{\prime}}|\psi\rangle \otimes|0\rangle$.

Hint: First take a computational basis state $|\psi\rangle=|x, y, z\rangle$ where $x, y, z \in\{0,1\}$. Then justify the statement for general $|\psi\rangle$.

3. (4pts) Deduce and draw a circuit that computes $e^{-i \Delta t A}|\psi\rangle \otimes|0\rangle$ when $|\psi\rangle \otimes|0\rangle$ is the input.
4. (Bonus question 2pts) Prove the preliminary statements (1) and (2) at the beginning of the problem.

Solution to problem 4:

1. We know (or can check) that $H X H=Z$ where H is the Hadamard matrix. Thus $(H \otimes H \otimes H) A(H \otimes H \otimes H)=A^{\prime}$. Since H is unitary and with $H=H^{\dagger}$ we have that $U=H$.
2. Since any state can be decomposed on the computational basis $|\psi\rangle=\sum_{x, y, z} C_{x y z}|x y z\rangle$ by linearity it suffices compute the output for a computational basis state $|\psi\rangle=|x y z\rangle$. After the first series of control-not gates we have the state $|x y z\rangle \otimes|x \oplus y \oplus z\rangle$. Now we act with $e^{i \Delta t Z}$ on the last qubit. This gives

$$
\begin{align*}
|x y z\rangle \otimes e^{i \Delta t Z}|x \oplus y \oplus z\rangle & =|x y z\rangle \otimes e^{i \Delta t(-1)^{x \oplus y \oplus z}}|x \oplus y \oplus z\rangle \tag{9}\\
& =e^{-i \Delta t(-1)^{x}(-1)^{y}(-1)^{z}}|x y z\rangle \otimes|x \oplus y \oplus z\rangle \tag{10}
\end{align*}
$$

Now we act with the last three control-not gates and find the output state

$$
\left.e^{-i \Delta t(-1)^{x}(-1)^{y}(-1)^{z}}|x y z\rangle \otimes 0\right\rangle
$$

This is precisely equal to

$$
\left.e^{-i \Delta t Z \otimes Z \otimes Z}|x y z\rangle \otimes 0\right\rangle
$$

3. We have

$$
e^{-i \Delta t A}|\psi\rangle \otimes|0\rangle=(H \otimes H \otimes H) e^{-i \Delta t A^{\prime}}(H \otimes H \otimes H)|\psi\rangle \otimes|0\rangle
$$

Thus the circuit is obtained by appending H gates at the beginning and end of the first three lines (picture).
4. Bonus question (2pts). For the first statement we first notice that $M|\phi\rangle=\lambda|\phi\rangle$ implies
 get the result.
For the second statement, expanding the exponential we have

$$
\begin{align*}
(U \otimes U \otimes U) e^{-i \Delta t A}\left(U^{\dagger} \otimes U^{\dagger} \otimes U^{\dagger}\right) & =\sum_{n=1}^{\infty} \frac{(-i \Delta t)^{n}}{n!}(U \otimes U \otimes U) A^{n}\left(U^{\dagger} \otimes U^{\dagger} \otimes U^{\dagger}\right) \tag{11}\\
& =\sum_{n=1}^{\infty} \frac{(-i \Delta t)^{n}}{n!} A^{\prime n} \tag{12}\\
& =e^{i \Delta t A^{\prime}} \tag{13}
\end{align*}
$$

where we used

$$
(U \otimes U \otimes U) A^{2}\left(U^{\dagger} \otimes U^{\dagger} \otimes U^{\dagger}\right)=(U \otimes U \otimes U) A\left(U^{\dagger} \otimes U^{\dagger} \otimes U^{\dagger}\right)(U \otimes U \otimes U) A\left(U^{\dagger} \otimes U^{\dagger} \otimes U^{\dagger}\right)=A^{\prime 2}
$$ by unitarity of U, and similarly for $n>2$.

