Renewable Energy: Energy Storage solution

In this exercise, you will learn about energy storage solutions.

1. Application of Flywheels in Cars
(a) Kinetic Energy: $E_{k i n}=\frac{1}{2} M \cdot \nu^{2} \approx 320 \mathrm{~kJ} \approx 0.089 \mathrm{kWh}$
(b) Losses due to air drag: $P_{\text {air }}=F_{\text {air }} \cdot \nu=\frac{1}{2} \rho_{\text {air }} \cdot c_{d} \cdot A_{\text {front }} \cdot \nu^{3} \approx 4.5 \mathrm{~kW}$
(c) Necessary $E_{\text {flywheel }}=\frac{1}{\eta}\left(E_{\text {kin }}+P_{\text {air }} \cdot \frac{d_{\text {range }}}{\nu}\right) \approx 35.1 \mathrm{MJ} \approx 9.8 \mathrm{kWh}$
(d) In a car, there is only space for wheels with a radius R of up to 70 cm . Therefore R is set to 70 cm .
according to the equation in the slides lecture, $\sigma_{\max }=\rho * R^{2} * \omega^{2}$, the maximum angular frequency can be derived directly: $\omega=\sqrt{\sigma_{\max } /\left(\rho * R^{2}\right)}=1649.6 \mathrm{rad} / \mathrm{s}$.
Comment: This is a rather high value, which probably causes additional losses due to aerodynamic and bearing drag.
The rotational energy of a disc with radius R and constant thickness D is
$E_{\text {flywheel }}=\frac{1}{2} \Theta \cdot \omega^{2}=\frac{1}{2} \omega^{2} \int_{V} r^{2} \cdot \rho_{C F P} \cdot \mathrm{dV}=\frac{1}{2} \omega^{2} \cdot 2 \pi \cdot D \cdot \rho_{C F P} \int_{0}^{R} r^{3} \cdot \mathrm{dr}=\frac{\pi}{4} \rho_{C F P}$. $\omega^{2} \cdot D \cdot R^{4}$
According to (c), each flywheel has to store $E_{\text {flywheel }}=17.55$ MJ. So now, the thickness D of one flywheel can be calculated:
$D=\frac{4 E_{\text {flywheel }}}{\pi \cdot \rho_{C F P} \cdot \omega^{2} \cdot R^{4}} \approx 9.4 \mathrm{~mm}$
The mass of both flywheels is accordingly $m=2 \rho_{C F P} \cdot \pi \cdot R^{2} \cdot D \approx 43.4 \mathrm{~kg}$
(e) The pair of flywheels should store the kinetic energy of a car moving at a speed of 120 km/h:
$2 E_{\text {flywheel }}=E_{\text {kin }}=\frac{1}{2} M \cdot \nu^{2} \approx 720 \mathrm{~kJ} \approx 0.20 \mathrm{kWh}$
Losses due to air resistance are neglected here. There is less space for a supplementary device. As a consequence, the radius of the flywheels R is set to 30 cm .
The maximal angular frequency is $\omega=\frac{2}{R} \sqrt{\frac{\sigma_{C F P}}{\rho_{C F P}} K} \approx 6000 \mathrm{rad} / \mathrm{s} \approx 57000 \mathrm{U} / \mathrm{min}$
Thickness of each flywheel $D=\frac{4 E_{\text {flywheel }}}{\pi \cdot \rho_{C F P} \cdot \omega^{2} \cdot R^{4}} \approx 1.1 \mathrm{~mm}$

SCHOOL OF ENGINEERING

MECHANICAL ENGINEERING
LRESE - Laboratory of Renewable Energy Sciences and Engineering

The mass of both flywheels is accordingly $m=2 \rho_{C F P} \cdot \pi \cdot R^{2} \cdot D \approx 0.89 \mathrm{~kg}$
2. Pumped air storage:
(a) Uncompressed air:

$$
\begin{aligned}
& p_{0} \approx 1 \mathrm{bar} \approx 100 \mathrm{kPa}, T_{0} \approx 25^{\circ} \mathrm{C} \\
& p_{1} \approx 300 \mathrm{bar} \approx 30 \mathrm{MPa}, T_{1}=T_{0} \approx 25^{\circ} \mathrm{C} \\
& p_{2}=p_{0} \approx 1 \mathrm{bar} \approx 100 \mathrm{kPa}, T_{2}<T_{0}
\end{aligned}
$$

Compressed air (gas tank):
Released air:
Isothermal process: $p \cdot V=n \cdot R \cdot T=$ const. or $V(p)=\frac{n \cdot R \cdot T}{p}$
Adiabatic process: $p \cdot V^{\kappa}=$ const. or $V(p)=V_{1} \cdot\left(\frac{p_{1}}{p}\right)^{1 / \kappa}=\frac{n \cdot R \cdot T_{1}}{p_{1}} \cdot\left(\frac{p_{1}}{p}\right)^{1 / \kappa}$

Figure 1: P-V diagram
(b) Isothermal compression work:
$W_{\text {comp }}=-\int_{0}^{1} p \cdot d V=-\left.\int_{p_{0}}^{p_{1}} p \frac{d V}{d p}\right|_{\text {isothermal }} d p$
$=n R T_{0} \int_{p_{0}}^{p_{1}} \frac{d p}{p}=n R T_{0} \cdot \ln \left(\frac{p_{1}}{p_{0}}\right) \approx 14.1 \mathrm{~kJ} / \mathrm{mol}$
Adiabatic expansion work:
$W_{\text {exp } 1}=-\int_{1}^{2} p \cdot d V=-\left.\int_{p_{1}}^{p_{0}} p \frac{d V}{d p}\right|_{\text {adiabatic }} d p$

SCHOOL OF ENGINEERING

MECHANICAL ENGINEERING
$=\frac{p_{1}^{1 / \kappa} \cdot V_{1}}{\kappa} \int_{p_{1}}^{p_{0}} p^{-1 / \kappa} \cdot d p=\frac{p_{1}^{1 / \kappa} \cdot V_{1}}{\kappa} \frac{\kappa}{\kappa-1}\left(p_{0}^{\frac{\kappa-1}{\kappa}}-p_{1}^{\frac{\kappa-1}{\kappa}}\right)=n R T_{1} \frac{p_{1}^{\frac{1-\kappa}{\kappa}}}{\kappa-1}\left(p_{0}^{\frac{\kappa-1}{\kappa}}-p_{1}^{\frac{\kappa-1}{\kappa}}\right)=$ $\frac{n R T_{1}}{\kappa-1}\left(\left(\frac{p_{0}}{p_{1}}\right)^{\frac{\kappa-1}{\kappa}}-1\right) \approx-5.0 \mathrm{~kJ} / \mathrm{mol}$
Isobaric expansion work:
$W_{e x p 2}=-\int_{2}^{0} p \cdot d V=-p_{0}\left(V_{0}-V_{2}\right)=n R T_{0}\left(\left(\frac{p_{0}}{p_{1}}\right)^{\frac{\kappa-1}{\kappa}}-1\right) \approx-2.0 \mathrm{~kJ} / \mathrm{mol}$
Losses: $W_{\text {losses }}=W_{\text {comp }}-W_{\text {exp } 1}-W_{\text {exp } 2} \approx 7 \mathrm{~kJ} / \mathrm{mol}$
Efficiency: $\eta=\frac{W_{\exp 1}+W_{\exp 2}}{W_{\text {comp }}} \approx 50 \%$
(c) From Problem 1c:

Energy needed for $120 \mathrm{~km}: E_{\text {drvie }}=P_{\text {air }} \cdot \frac{d_{\text {range }}}{\nu} \approx 24.2 \mathrm{MJ}$
Released work from pumped air storage: $W_{\text {released }}=W_{\text {exp } 1}+W_{\text {exp } 2} \approx 7.0 \mathrm{~kJ} / \mathrm{mol}$
\rightarrow Minimal amount of air : $n=\frac{E_{\text {drive }}}{W_{\text {released }}} \approx 3478 \mathrm{~mol}, V_{\text {air }}=\frac{R \cdot T_{1}}{p_{1}} \frac{E_{\text {drive }}}{W_{\text {released }}} \approx 0.287$ m^{3}
There should be enough space in a car for a 300 litre tank.
3. Pumped water storage:
(a) Potential energy of $1 \mathrm{~m}^{3}$ water: $E_{p o t}=m \cdot g \cdot \Delta h=1000 \cdot 9.81 \cdot 1000 \approx 9.81 \mathrm{MJ}$ Annual production of $100 \mathrm{MW}_{p}$ PV plant:
$E_{\text {prod }}=\eta \cdot P_{p} \cdot t=0.15 \cdot 10^{8} \cdot 365 \cdot 24 \cdot 3600 \approx 4.7 \cdot 10^{14} \mathrm{~J}$
Amount of water: $V_{\text {water }}=\eta_{\text {pump }} \cdot \frac{E_{\text {prod }}}{E_{\text {pot }}}=0.85 \cdot \frac{4.7 \cdot 10^{14}}{9.8 \cdot 10^{6}} \mathrm{~m}^{3} \approx 4.1 \cdot 10^{7} \mathrm{~m}^{3}$
(b) Annual production of $100 \mathrm{MW}_{a v}$ PV plant:
$E_{\text {prod }}=P_{\text {av }} \cdot t=10^{8} \cdot 365 \cdot 24 \cdot 3600 \approx 3.2 \cdot 10^{15} \mathrm{~J}$
Amount of water: $V_{\text {water }}=\eta_{\text {pump }} \cdot \frac{E_{\text {prod }}}{E_{\text {pot }}}=0.85 \cdot \frac{3.2 \cdot 10^{15}}{9.8 \cdot 10^{6}} \mathrm{~m}^{3} \approx 2.7 \cdot 10^{8} \mathrm{~m}^{3}$
4. Batteries:
(a) for the discharge:

Anode: $\mathrm{Pb}+\mathrm{SO}_{4}^{2-} \longrightarrow \mathrm{PbSO}_{4}+2 \mathrm{e}^{-}$
Cathode: $\mathrm{PbO}_{2}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(b) Equation for the electrochemical equilibrium: $U^{0}=\Delta E^{0}=-\frac{\Delta G^{0}}{z \cdot F}$
ΔG^{0} for Pb -Acid and F are given, it is possible to see from point a) that $\mathrm{z}=2$.

SCHOOL OF ENGINEERING

MECHANICAL ENGINEERING
$\longrightarrow U^{0}=2.047 \mathrm{~V}$
If a 24 V battery is required, a series of at least 12 Pb -Acid cells is needed $\longrightarrow=\mathrm{c} . \mathrm{a}$ 24.56 V
(c) How many moles of Pb got converted? ($=$ moles of PbSO_{4} formed on the anode only)
$n_{C_{d}}=m_{C_{d}} / M_{C_{d}}=\frac{11.6 \mathrm{~g}}{207.2 \mathrm{~g} / \mathrm{mol}}=0.056 \mathrm{~mol}$
With the help of the Faraday constant (which defines the mol-specific charge of matter), we can now calculate the overall charge in Anode side we get, when the 56 mmol are converted. Note from the half-cell reaction, that there are 2 electrons involved when 1 Pb is converted.
$F=\frac{Q_{0}}{z \cdot n} \quad Q_{0}=F \cdot z \cdot n=96485 \mathrm{~A} . \mathrm{s} / \mathrm{mol} \cdot 2 \cdot 0.056 \mathrm{~mol}=10803 \mathrm{C}$
To determine the time it will take to recharge the battery, we divide the charge by the given current:
10803 A.s/ $1.5 \mathrm{~A}=7202.2 \mathrm{~s}=2.0 \mathrm{~h}$
(d) For obtaining the mass specific charge Q in $\mathrm{Ah} / \mathrm{kg}$ we use the Faraday law again. Note, that all the charge-carrying species (educts, left side of the overall reaction equation) are involved in the calculation by their molar masses:
$Q=\frac{z \cdot F}{\sum_{i} M_{i}} ; \sum_{i} M_{i}=1 \cdot \mathrm{M}(\mathrm{Pb})+1 \cdot \mathrm{M}\left(\mathrm{PbO}_{2}\right)+2 \cdot \mathrm{M}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
From the given molar masses for $\mathrm{Pb}, \mathrm{O}, \mathrm{S}, \mathrm{H}$ to be $207.2,16,32,1 \mathrm{~g} / \mathrm{mol}$ respectiverly,it is possible to obtain: $\sum_{i} M_{i}=642.4 \mathrm{~g} / \mathrm{mol}$
Having in mind that z is still 2 , the specific charge now calculates to $Q=300.39 \mathrm{C} / \mathrm{g}$ $=83.44 \mathrm{Ah} / \mathrm{kg}$.
The energy density can be obtained from the charge density (= mass specific charge) by multiplying by the reversible cell voltage, since voltage $U[V]$.current $I[A]=$ Power $\mathrm{P}[\mathrm{W}]$ and Power $\mathrm{P}[\mathrm{W}]$.time $\mathrm{t}[\mathrm{h}]=$ Energy $\mathrm{E}[\mathrm{Wh}]$:
$E=Q \cdot U^{0}$; using U^{0} from above $=2.047 \mathrm{~V}$, it follows: $\mathrm{E}=170.8 \mathrm{~Wh} / \mathrm{kg}$.
(e) i. Equation for the electrochemical equilibrium: $U^{0}=\Delta E^{0}=-\frac{\Delta G^{0}}{z \cdot F}$, $\longrightarrow U^{0}=4.20 \mathrm{~V}$.
ii. $Q=\frac{z \cdot F}{\sum_{i} M_{i}} ; \sum_{i} M_{i}=1 . \mathrm{M}\left(\mathrm{LiC}_{6}\right)+1 . \mathrm{M}\left(\mathrm{CoO}_{2}\right)=169.8 \mathrm{~g} / \mathrm{mol} ; \mathrm{z}=1$
$\longrightarrow Q_{\text {Li-ion }}=157.84 \mathrm{Ah} / \mathrm{kg} \longrightarrow U_{\text {Li-ion }}^{0} \longrightarrow E_{\text {Li-ion }}=662.54 \mathrm{~Wh} / \mathrm{kg}$
compare:
$\longrightarrow Q_{P b-A c i d}=83.44 \mathrm{Ah} / \mathrm{kg} \longrightarrow U_{P b-A c i d}^{0} \longrightarrow E_{P b-A c i d}=170.8 \mathrm{~Wh} / \mathrm{kg}$

SCHOOL OF ENGINEERING

MECHANICAL ENGINEERING
LRESE - Laboratory of Renewable Energy Sciences and Engineering
iii. reason 1): reversible cell voltage has doubled
reason 2): less weight of the charged electrode and electrolyte
\rightarrow both parameters bring big advantage in salability of a battery system

