Quantum computation : le cture 2

· Axions of quantum mechanics:

1. state of a quantum system

3. measurement postulate

4. Combination of quantum systems

· Quantum circuits - Barenco & als theorem

Axian 1: State of a quantum system

The state of a quantum system (isolated from

the environment) is represented by a unit

vector 14> in a Hilbert space H.

In particular, the state of a system of

n qubits is represented by a unit vector in

 $\mathcal{H} = \mathbb{C}^2^n \wedge \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2 \wedge \mathbb{C}^2 \otimes \mathbb{C}^2 \wedge \mathbb$

Computational basis: { 1x1,...,x2, x; E { g13, 1 = i ≤ n }

 $\angle x_1, \ldots, x_n \mid x_n, \ldots, x_n \rangle = \delta_{x_1 \cdot x_1} \cdots \delta_{x_n \cdot x_n}$

 $|\varphi\rangle = \sum_{\chi_1..\chi_n \in \{q_1\}} \alpha_{\chi_1,...,\chi_n} |\chi_1,...,\chi_n\rangle$

 $1 = \langle \varphi | \varphi \rangle = \frac{\sum_{\chi_{1}...\chi_{n} \in \{0,1\}} | \varphi_{\chi_{1}...,\chi_{n}} |^{2}$

 $\underline{N=1}: |q>=(\cos \theta)|_{0} + (\sin \theta)|_{1}, (\cos \theta)^{2} + (\sin \theta)^{2} = 1$

Two particular cases: $(|t\rangle = \frac{1}{J_2}(|0\rangle + |4\rangle)$ ($\Theta = +45^{\circ} \& -45^{\circ}$) $(|-\rangle = \frac{1}{J_2}(|0\rangle - |4\rangle)$ $(|0\rangle - |4\rangle)$

A various notations here!

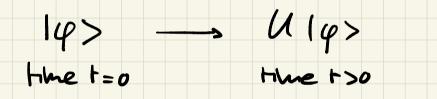
$\begin{cases} 10 \end{pmatrix} + 11 \end{pmatrix}$: addition of 2 vectors $\bigcirc \bigcirc \bigcirc 1$: xor of 2 bite

(10) (11): tensor product of 2 vectors

Axian 2: Time evolution

An isolated quantum system evolves in time

via unitary lucar transformations:



where $U = 2^n \times 2^n$ unitary matrix:

 $UU^{\dagger} = U^{\dagger}U = I$ with $U^{\dagger} = a \, djaint \, of \, U$

(so $U^{-1} = U^{+}$) (= complex-conjugate transpose)

Quantum circuit: Andher quantum circuit: - U2 - 192> 140> - 41 - 141> $1(q_2) = U_2 | q_1 >$ 14.7= U146> = U2 U2 140> (=> reversibility!) Norm conservation: $(\Delta \operatorname{order} \Delta)$ < 4, 14, >= < 40 1 Un Un 140 > $= \langle q_0 | I | q_0 \rangle = \langle q_0 | q_0 \rangle = 1$

Observe that similarly:

 $\langle q_2 | q_2 \rangle = \langle q_1 | u_2^{\dagger} u_2 | q_1 \rangle = \langle q_1 | q_1 \rangle = 1$

i.e. $U = U_2 U_4$ is also a unitary transformation (more formally, one can check that $U(U^{\dagger} = U_2 U_4 U_4^{\dagger} U_2^{\dagger} = U_2 U_2^{\dagger} = I)$

and more generally, any quantum circuit

can always be represented by a single

unitary transformation U.

Examples of quantum cituits (elementary gales)

1) NOT gate: acts on a single qubit in C²

19> ___ NOT ___ NOT 19>

NOT $|0\rangle = |1\rangle$, NOT $|1\rangle = |0\rangle$

=> NOT (00 10> + 04 (1>) = 00 11> + 04 10>

(= reflection writ to the axis with angle 45°)

Matrix representation in C²:

CO | NOT (0) = <0 | 1 > =0
CO | NOT (0) = <0 | 1 > =0
CO | NOT (0) = <0 | 1 > =0

<1 (NOT 10> = <1 (1> = 1 < 1 NOT 1) = <1 0> =0

\implies NOT = $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ = NOT⁺ Hermitian

and NOT. NOT = NOT, NOT = I cenitary

<u>Also:</u> NOT |+> = |+>, NOT |-> = (-1)|->

2) C-NOT gate: acts on 2 gubits in C2 & C2 ~ C4

CNOT 100>=100> CNOT /01> = 101)

CNOT (10) = (11) CNOT (11) = (10)

said otherwise: CNOT | x, x2> = (x1, x2 + x)

124> ____ (24) 101) 111> 100 1 1100 1 1000 Matrix representation in C4: CNOT= 0001 0010/

CNOT⁺ = CNOT Hermitian

CNOT. CNOT = CNOT CNOT = I unitary

1(q>= 000 (00> + 000 101> + 040 100> + 040 110>

=> CNOT 14>= 000 100> + 001 101> + 010 11>+011 10>

Parenthesis

Classically, a CNOT gate can enulate a

COPY gate: z ---- z

But in the quantum world, copying a

quantum state is impossible (no doning thun).

Let us solve this apparent contradiction ...

Cansider 142 8 10> as input state to the

CNOT gate, with 14>=0010>+04/1>:

CNOT (14> 810>) = CNOT ((2,10> + 2,1+>) 810>)

= 0% CNOT (0,0) + 0% CNOT (1,0)

= 06 10,0) + 01, 11,1> = Bell state

(only states in the computational basis can be copied)

= 14> 00 14>

Axian 3: Measurement postulate

If an isolated quantum system is in state

14> E H= C2" and one observes the system

through a measure apparatus, described

by an orthonormal basis \$140,142...1922, 3 of De

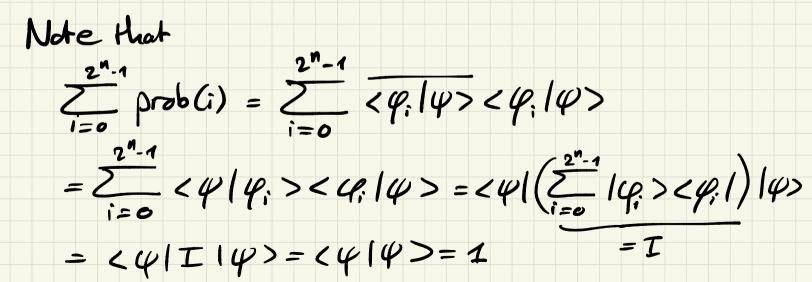
(note that in this cause, we will always

consider the computational basis),

then the autcame of the measurement is

given by 14:> (osie2"-1) with probability

$prob(i) = |\langle q_i | q \rangle|^2$



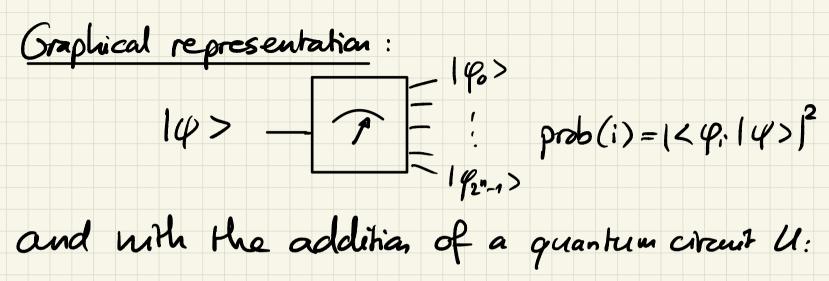
Observe that $|q_i><q_i|=\begin{pmatrix}0&0\\0&0\end{pmatrix}=ith row$ ith column

is a rank-are matrix

which is also a projector matrix (on 19:>)

(later in the cause, we will see a) more general definition of measurement

with projectors.



 $|\psi > - u - u|\psi > - \bar{r} = \frac{|\varphi_0>}{|\psi_{2^{n-1}}>}$

 $Prob(i) = | < \varphi_i | U | | \psi > |^2$

Axian 4: Camposition of quantum systems

System 1: NA qubits $\mathcal{H}_n = (\mathbb{C}^2)^{\otimes n_1}$ (dimension 2^{n_2})

System 2: N_2 qubits $\mathcal{H}_2 = (\mathbb{C}^2)^{\otimes n_2}$ (dimension 2^{n_2})

 $\rightarrow n_1 + n_2$ qubits $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 = (\mathbb{C}^2)^{\otimes(n_1 + n_2)} (dm. 2^{n_1 + n_2})$

Product states and entangled states

Not all states in H can be written as

14 > 0142 >: these are product states

Examples in $\mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$: (2 qubits)

10,0) = (0) & (0) $\frac{1}{\sqrt{2}}(10,1) + (0,0) = 10 \otimes \left(\frac{1}{\sqrt{2}}(1) + 10\right)$ 主(10,0)+10,1>+11,0>+11,1>)= 赤(0>+11>)の是(0>+11>) Counter-examples are entangled states: $\frac{1}{\sqrt{2}}(|0,0>+(1,1>) \text{ Bell state } \neq |4,28|4_2)$ Easy criterian: 000 10,0>+001 101>+ 0101 1,0>+ 011 1,1> is a product state iff det (and an)=0

Quantum circuits (David Deutsch)

Remember that a quantum circuit operating

an n gubits can always be represented by

a 2"×2" unitary matrix U.

1) 1-qubit gates ($\mathcal{H}=\mathbb{C}^2$)

• NOT gate: $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

I we will keep this notation from now on

• Hadamard gate: $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

SH lo) = 去 (10>+11>)=1+> 2日12= 一行(102-12)=1-> 14>= 00 10> + 01 11> =) $H(\phi) = \alpha_0 | + > + \alpha_1 | - >$ $= \frac{\alpha_{0} + \alpha_{1}}{\sqrt{2}} |0\rangle + \frac{\alpha_{0} - \alpha_{1}}{\sqrt{2}} |1\rangle$

Observe that H=H^t and HH^t=I (unitary matrix)

· Phase gates Z, S and T: (= unitary matrices also!)

 $Z = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$ = i

Zlo>=lo>, Zl1>=(-1)|1>

14>= ~ lo> + ~ 11> => Z14>= ~ lo> - ~ 11>

(Same for S and T)

Observe that $Z = S^2 = T^4$ and $S = T^2$

Theorem (without proof)

Any 2x2 unitary matrix U can be approximated

by a product of gates H,S,T in the following

sense: 45,0, JV a product of O({}) matrices

H,S,T such that ILU-VH<S

(where N.W is some matrix norm)

2) 2-qubit gates ($\mathcal{Y}=\mathbb{C}^4$)

- CNOT gate: $CNOT = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} |z\rangle |z\rangle |z\rangle |z\rangle |y| = |z\rangle$
 - (NOT 100) = 100> (NOT 101> = 101>
 - CNOT 110) = 111) CNOT (11) = (10)
 - 19)= 000 100) + 001 101> + 040 10) + 0/11 (11)
 - => (NOT 14> = 0 (00) + o (10) + o (11) + o (11)
 - A input & autput states \$ product states in general!

· Controlled - U gate: (where U=2×2 unitary matrix)

3) Multiple qubit gates

 $\mathcal{H}=\mathbb{C}^{8}(And\mathbb{C}^{6})$ · Toffoli gate (CCNOT)

12> - 120 2.4>

Matrix representation -> exercises!

Remark

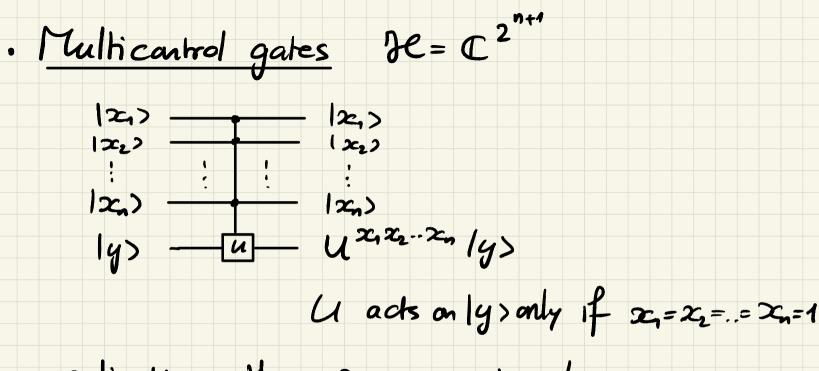
- Classically, it is not possible to create a

Toffoli gate from CNOT & 1-bit gates.

- In the quantum world, this is possible

(Using more precisely CNOT, H, T&S gates)

-> exercises!



realization with n=3 -> exercises!

Theorem (A. Barenco bral.) (without proof)

Any 2"x 2" unitary matrix U can be

approximated (with arbitrary precision) by

a circuit made only of gates T, S, H & CNOT.

The number of gates needed for this approximation

depends on the unitary matrix ((may be exp. in n).

Remark: Without the T gate, it can be shown that exponential no quantum advantage can be obtained over classical (= Gottesman-Knill Hum)