Quantum camputation: le cture 2

- Axiams of quantum mecharics:

1. state of a quantum system
2. evdution of a quantion system
3. measurement postulate
4. Carbination of quantuon systems

- Quantum circuits - Barencolal's thearem

Axian 1: State of a quantum system
The state of a quantum system (isolated from the environment) is represented by a unit vector lys in a Hilbert space \mathcal{H}.

In particular, the state of a system of n quits is represented by a unit vector in

$$
H E=\mathbb{C}^{2^{n}} \sim \underbrace{\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \ldots \otimes \mathbb{C}^{2}}_{n \text { times }} \text {. }\|(\varphi\rangle\|^{2} \neq n
$$

Computational basis: $\left\{\left|x_{1}, \ldots, x_{n}\right\rangle, x_{i} \in\{0,1\}, 1 \leq i \leq n\right\}$

$$
\begin{aligned}
& \left\langle x_{1}^{-}, \ldots, x_{n}^{\prime} \mid x_{1}, \ldots, x_{n}\right\rangle=\delta_{x_{1}^{\prime} x_{1} \ldots \delta_{2 x_{n}^{\prime}} x_{n}} \\
& |\varphi\rangle=\sum_{x_{1} \ldots x_{n} \in\{0,\}} \alpha_{x_{1}, \ldots, x_{n}}\left|x_{1}, \ldots, x_{n}\right\rangle \\
& 1=\langle\varphi \mid \varphi\rangle=\sum_{x_{1}, x_{n} \in\{0,1\}}\left|\alpha_{x_{n}, \ldots, x_{n}}\right|^{2}
\end{aligned}
$$

$n=1:|\varphi\rangle=(\cos \theta)|0\rangle+(\sin \theta)|1\rangle,(\cos \theta)^{2}+(\sin \theta)^{2}=1$ Two particular cases: $\left\{\begin{array}{l}|t\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\ \left(\theta=+45^{\circ} \&-45^{\circ}\right)\end{array} \quad\left(|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right.\right.$

A various notations here!

$$
\left\{\begin{array}{l}
|0\rangle+|1\rangle \text { : addition of } 2 \text { vectors } \\
0 \Theta 1: \times \text { : of } 2 \text { bits } \\
|0\rangle \otimes|1\rangle \text { : tensor product of } 2 \text { vectors }
\end{array}\right.
$$

Avian 2: Time evolution
An isolated quantum system endues in time via unitary linear transformations:

$$
\underset{\text { time } t=0}{|\varphi\rangle} \longrightarrow u_{\text {the } r>0}
$$

where $U=2^{n} \times 2^{n}$ unitary matrix:
$U U^{+}=U^{+} U=I$ with $U^{+}=$adjoint of U (so $U^{-1}=U^{+}$) (=complex-coyiugate transpose)

Quantum circuit :

$$
\left|\varphi_{0}\right\rangle-u_{1}-\left|\varphi_{1}\right\rangle-u_{2}-\left|\varphi_{2}\right\rangle
$$

$$
\left|\varphi_{1}\right\rangle=U_{1}\left|\varphi_{0}\right\rangle
$$

$$
\Leftrightarrow \text { reversibility!) }
$$

Norm conservation:

Anther quantruen circuit:

$$
\begin{aligned}
& \left|\varphi_{2}\right\rangle=U_{2}\left|\varphi_{1}\right\rangle \\
& =U_{2} U_{1}\left|\varphi_{0}\right\rangle
\end{aligned}
$$

(Δ order Δ)

$$
\begin{aligned}
\left\langle\varphi_{1} \mid \varphi_{1}\right\rangle & =\left\langle\varphi_{0}\right| u_{1}^{+} u_{1}\left|\varphi_{0}\right\rangle \\
& =\left\langle\varphi_{0}\right| I\left|\varphi_{0}\right\rangle=\left\langle\varphi_{0} \mid \varphi_{0}\right\rangle=1
\end{aligned}
$$

Observe that similarly:

$$
\left\langle\varphi_{2} \mid \varphi_{2}\right\rangle=\left\langle\varphi_{1}\right| \frac{u_{2}^{+} U_{2}}{=I}\left|\varphi_{1}\right\rangle=\left\langle\varphi_{1} \mid \varphi_{1}\right\rangle=1
$$

ie. $U=U_{2} U_{1}$ is also a unitary transformation (more formally, one can check that $U U^{+}=U_{2} u_{1} U_{1}^{+} U_{2}^{+}=U_{2} U_{2}^{+}=I$) and more generally, any quantum cirail can always be represented by a single unitary transformation U.

Examples of quantum circuits (elementary gates)

1) NOT gate: acts on a single quit in \mathbb{C}^{2}

$\operatorname{NOT}|0\rangle=|1\rangle, \operatorname{NOT}|1\rangle=|0\rangle$
$\Rightarrow \operatorname{NoT}\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right)=\alpha_{0}|1\rangle+\alpha_{1}|0\rangle$ (=reflection writ. to the axis with angle 45°)

Matrix representation in \mathbb{C}^{2} :

$$
\begin{aligned}
& \langle O| \operatorname{NOT}|0\rangle=\langle 0 \mid 1\rangle=0 \quad\langle 0| \operatorname{NOT}|1\rangle=\langle 0 \mid 0\rangle=1 \\
& \langle 1| \operatorname{NOT}|0\rangle=\langle 1 \mid 1\rangle=1 \quad\langle 1| \operatorname{NoT}|1\rangle=\langle 1 \mid 0\rangle=0 \\
& \Rightarrow \text { NOT }=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\operatorname{NOT}^{+} \quad \text { Hermitian }
\end{aligned}
$$

$$
\text { and NOT. } \mathrm{NOT}^{+}=\mathrm{NOT}^{\dagger} \cdot N O T=I \text { unitary }
$$

Also: NOT $|+\rangle=|+\rangle$, NOT $|-\rangle=(-1)|-\rangle$
2) C-NoT gate: acts on 2 qubits in $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \sim \mathbb{C}^{4}$

CNOT $|00\rangle=|00\rangle$
CNOT $|01\rangle=|01\rangle$
CNOT $|10\rangle=|11\rangle \quad$ CNOT $|11\rangle=|10\rangle$
said otherwise: $\operatorname{CNOT}\left|x_{1}, x_{2}\right\rangle=\left|x_{1}, x_{2} \oplus x_{1}\right\rangle$

Matrix representation in $\mathbb{C}^{h}: C N O T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
$\mathrm{CNOT}^{+}=$CNOT Hermition
CNOT. CNOT $^{+}=$CNOT? ${ }^{+}$CNOT $=I$ unitary

$$
\begin{aligned}
& |\varphi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
& \Rightarrow \operatorname{CNOT}|\varphi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|n\rangle+\alpha_{11}|10\rangle
\end{aligned}
$$

Parenthesis
Classically, a CNOT gate can emulate a
Copy gate:

But in the quantum world, copying a quantum state is impossible (no coning the). Let us solve this apparent contradiction...

Consider $|\varphi\rangle \otimes|0\rangle$ as input state to the CNOT gate, with $|\varphi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle$:

$$
\begin{aligned}
& \operatorname{CNOT}(|\varphi\rangle \otimes|0\rangle)=\operatorname{CNOT}\left(\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes|0\rangle\right) \\
& \begin{aligned}
&=\alpha_{0} \operatorname{CNOT}(0,0\rangle+\alpha_{1} \operatorname{CNOT}|1,0\rangle \\
&=\alpha_{0}|0,0\rangle+\alpha_{1}|1,1\rangle=\text { Bell state } \\
& \neq|\varphi\rangle \otimes|\varphi\rangle
\end{aligned}
\end{aligned}
$$

(only states in the computational basis can be copied)

Axian 3: Me asurement postulate
If an isdated quantum system is in state $|\psi\rangle \in H=\mathbb{C}^{2^{n}}$ and one observes the system through a measure apparatus, described by an orthonormal basis $\left\{\left|\varphi_{0}\right\rangle,\left|\varphi_{1}\right\rangle \ldots\left|\varphi_{2 n-1}\right\rangle\right\}$ of De (note that in this course, we will always consider the cauputational basis),
then the autcane of the measurement is given by $\left|\varphi_{i}\right\rangle\left(0 \leq i \leq 2^{n}-1\right)$ with probability

$$
\operatorname{prob}(i)=\left|\left\langle\varphi_{i} \mid \psi\right\rangle\right|^{2}
$$

Note that

$$
\begin{aligned}
& \sum_{i=0}^{2^{n}-1} \\
& \operatorname{rrob}\left(C_{i}\right)=\sum_{i=0}^{2^{n-1}} \overline{\left\langle\varphi_{i} \mid \psi\right\rangle}\left\langle\varphi_{i} \mid \psi\right\rangle \\
& =\sum_{i=0}^{2^{n-1}}\left\langle\psi \mid \varphi_{i}\right\rangle\left\langle\varphi_{i} \mid \psi\right\rangle=\langle\psi|(\underbrace{\sum_{i=1}^{2^{n}-1}}_{i=0}\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|)|\psi\rangle \\
& =\langle\psi| I|\psi\rangle=\langle\psi \mid \psi\rangle=1
\end{aligned}
$$

Observe that $\left|\varphi_{i}\right\rangle\left\langle\varphi_{i}\right|=\left(\begin{array}{ccc}0 & & \\ 0 & 0_{1} & 0 \\ 0 & & \ddots\end{array}\right)$ - th raw is a rank-aue matrix which is also a projector matrix (an $\left|\varphi_{i}\right\rangle$)

Later in the carse, we will see a more general definition of measurement with projectors.

Graphical representation:

$$
|\psi\rangle-\overparen{T}=\begin{aligned}
& \left|\varphi_{0}\right\rangle \\
& \vdots \\
& \left|\varphi_{2 n},\right\rangle
\end{aligned} \quad \operatorname{prob}(i)=\left|\left\langle\varphi_{i} \mid \psi\right\rangle\right|^{2}
$$

and with the addition of a quantum circuit U :

$$
\begin{aligned}
|\psi\rangle-u-U|\psi\rangle-\sqrt{T} E_{i}^{\left|\varphi_{i}\right\rangle} \vdots \\
\left|\varphi_{2 n-1}\right\rangle \\
\operatorname{prob}(i)=\left.1\left\langle\varphi_{i}\right| u|\psi\rangle\right|^{2}
\end{aligned}
$$

Axian 4: Composition of quantum systems
system 1: n_{1} quails $H e_{1}=\left(\mathbb{C}^{2}\right)^{\text {on } n_{1}} \quad$ (dimension $\left.2^{n_{1}}\right)$
system 2: n_{2} quits $\mathscr{H}_{2}=\left(\mathbb{C}^{2}\right)^{\otimes n_{2}} \quad$ (dimension $2^{n_{2}}$)
$\rightarrow n_{1}+n_{2}$ quits $H L_{1} \mathscr{C}_{1} A l_{2}=\left(\mathbb{C}^{2}\right)^{\otimes\left(n_{1}+n_{2}\right)}\left(\right.$ dim. $\left.2^{n_{1}+n_{2}}\right)$
Product states and entangled states
Not all states in H can be written as $\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$: these are product states

Examples in $H=\mathbb{C}^{2} \otimes \mathbb{C}^{2}:(2$ quits $)$

$$
\begin{aligned}
& |0,0\rangle=|0\rangle \&|0\rangle \\
& \frac{1}{\sqrt{2}}(|0,1\rangle+|0,0\rangle)=|0\rangle \otimes\left(\frac{1}{\sqrt{2}}(|1\rangle+|0\rangle)\right) \\
& \frac{1}{2}(|0,0\rangle+|0,1\rangle+|1,0\rangle+|1,1\rangle)=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)
\end{aligned}
$$

Counter-examples are entangled states:

$$
\frac{1}{\sqrt{2}}(|0,0\rangle+(1,1\rangle) \text { Bell state } \neq\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle
$$

Easy criterion: $\alpha_{00}(0,0)+\alpha_{01}|, 1\rangle+\alpha_{n 0}|1,0\rangle+\alpha_{n}|1,1\rangle$ is a product state of $\operatorname{det}\left(\begin{array}{ll}\alpha_{00} & \alpha_{0} \\ \alpha_{10} & \alpha_{11}\end{array}\right)=0$

Quantum circuits (David Deutsch)
Remember that a quantum circuit operating an n quits can always be represented by a $2^{n} \times 2^{n}$ unitary matrix U.

1) 1 -quit gates $\left(H=\mathbb{C}^{2}\right)$

- Not gate: $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

T we will keep this notation from now on

- Madamard gate: $H=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$

$$
\begin{aligned}
& \left\{\begin{array}{l}
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)=|+\rangle \\
H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)=|-\rangle
\end{array}\right. \\
& |\varphi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \\
& \Rightarrow H|\varphi\rangle=\alpha_{0}|+\rangle+\alpha_{1}|-\rangle \\
& =\frac{\alpha_{0}+\alpha_{1}}{\sqrt{2}}|0\rangle+\frac{\alpha_{0}-\alpha_{1}}{\sqrt{2}}|1\rangle
\end{aligned}
$$

Observe that $H=\mathrm{H}^{+}$and $H H^{t}=I$ (unitary matrix)
-Phase gates Z, S and T : (=unitary matrices also!)

$$
\begin{aligned}
& Z=\left(\begin{array}{cc}
1 & 0 \\
0 & \underset{=-1}{e^{i \pi}}
\end{array}\right) \quad S=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{e^{i \pi / 2}}{=i}
\end{array}\right) \quad T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right) \\
& Z|0\rangle=|0\rangle, Z|1\rangle=(-1)|1\rangle \\
& |\varphi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \Rightarrow Z|\varphi\rangle=\alpha_{0}|0\rangle-\alpha_{1}|1\rangle
\end{aligned}
$$

(same for S and T)
Observe that $Z=S^{2}=T^{4}$ and $S=T^{2}$

Theorem (without proof)
Any 2×2 unitary matrix U can be approximated by a product of gates H, S, T in the following sense: $\forall \delta>0, \exists V$ a product of $O\left(\frac{1}{\delta}\right)$ matrices M, S, T such that $\| U-V H<\delta$ (where $H \cdot l l$ is same matrix nam)
2) 2-qubit gates $\left(H E=\mathbb{C}^{4}\right)$

CNOT |00| $=|00\rangle \quad$ CNOT $|01\rangle=|01\rangle$
CNOT $|10\rangle=|11\rangle \quad$ CNOT $|11\rangle=|10\rangle$

$$
\begin{aligned}
& |\varphi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle \\
& \Rightarrow\left(N O T|\varphi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|1\rangle+\alpha_{n}|10\rangle\right.
\end{aligned}
$$

Δ input \& aitput states \neq product states in general!

- Controlled-U gate: (where $U=2 \times 2$ unitary matrix)

$$
|x\rangle-u \left\lvert\, \begin{array}{ll}
|y\rangle & \text { if } x=0 \\
u|y\rangle & \text { if } x=1
\end{array}\right.
$$

3) Multiple quit gates

- Toffoli gate (CNNOT) $H=\mathbb{C}^{8}$ (\triangle not \mathbb{C}^{6})

Matrix representation \rightarrow exercises!
Remark

- Classically, it is not possible to create a Toffoli gate from CNOT \& 1-bit gates.
- In the quantum world, this is possible (using more precisely CNOT, H,T\&S gates) \rightarrow exercises!
- Multicontrol gates $\mathcal{H}=\mathbb{C}^{2^{n+1}}$

4 act on |y >only if $x_{1}=x_{2}=\ldots x_{n}=1$
realization with $n=3 \rightarrow$ exercises!

Theorem (A.Barenco \& al.) (without proof)
Any $2^{n} \times 2^{n}$ unitary matrix U can be approximated (with arbitrary precision) by a circuit made only of gates $T, S, H \&$ KNOT. The number of gates needed for this approximation depends on the unitary matrix U (may be exp. in n).
Remark: Without the T gate, it can be shown that no quantum advantage can be obtained over classical ($=$ Gottresman-KmU Hmm) circuits.

