Quantum computation: lecture 2

- · Axions of quantum mechanics:
 - 1. State of a quantum system
 - 2. exclution of a quantum system
 - 3. me asurement postulate
 - 4. Combination of quantum systems
- · Quantum circuits Barencolais theorem

Axian 1: State of a quantum system

The state of a quantum system (isolated from the environment) is represented by a unit vector 14> in a Hilbert space H.

Computational basis:
$$\frac{1}{2} | x_1, ..., x_n > \frac{1}{2} \times \frac{1}{2}$$

$$1 = \langle 9 | 9 \rangle = \frac{2}{x_1 \cdot x_1 \in \{0,1\}} | (x_{x_1, \dots, x_n}|^2)$$

$$N = 1: | 9 \rangle = (\cos \theta) | 0 \rangle + (\sin \theta) | 1 \rangle, (\cos \theta)^2 + (\sin \theta)^2 = 1$$
Two particular cases: $(|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

$$(\theta = +45^{\circ} \ 2 - 45^{\circ}) \qquad \{|-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Narious notations here!

```
(10) + 11: addition of 2 vectors

0 \oplus 1: xor of 2 bits

(10) \otimes 11: tensor product of 2 vectors
```

Axian 2: Time evolution

An isolated quantum system evolves in time via unitary linear transformations:

where $U = 2^n \times 2^n$ unitary matrix:

$$UU^{\dagger} = U^{\dagger}U = I$$
 with $U^{\dagger} = adjaint of U$
(so $U^{-1} = U^{\dagger}$) (= complex-conjugate transpose)

Quantum circuit: Andher quantum arreit: _ U2 - 192> 140> - 41 - 141> 142> = U2/4> 14, >= U1/4) = U2 U1 140> (=> reversibility!)

Norm conservation: $(\triangle \text{ order } \triangle)$ < 4, 14, > = < 40 | Un Un 140 > = < 90 | I | 90 > = < 90 | 90 > = 1

Observe that similarly:

$$\langle q_2 | q_2 \rangle = \langle q_1 | \mathcal{U}_2^{\dagger} \mathcal{U}_2 | q_1 \rangle = \langle q_1 | q_1 \rangle = 1$$

i.e. $\mathcal{U} = \mathcal{U}_2 \mathcal{U}_1$ is also a unitary transformation (more family, one can check that $\mathcal{U}\mathcal{U}^{\dagger} = \mathcal{U}_2 \mathcal{U}_1 \mathcal{U}_2^{\dagger} = \mathcal{U}_2 \mathcal{U}_2^{\dagger} = 1$)

Cond more generally, any quantum circuit

Can always be represented by a single

Unitary transformation \mathcal{U} .

Examples of quantum citauits (elementary gates) 1) NOT gate: ack on a single qubit in C2 19> - NOT 19> NOT 10>= 11>, NOT 11>= 10> => NOT (00 10> + 0, (1>) = 0, (1) + 0, (0) (= reflection w.r.t. to the axis with angle 45°)

2) C-NOT gate: acts an 2 qubits in
$$C^2 \otimes C^2 \cap C^4$$

CNOT $|00\rangle = |00\rangle$ CNOT $|01\rangle = |01\rangle$

CNOT $|10\rangle = |11\rangle$ CNOT $|11\rangle = |10\rangle$

Said otherwise: CNOT $|x_1,x_2\rangle = |x_1,x_2\otimes x_1\rangle$
 $|x_2\rangle = |x_1\rangle$
 $|x_2\rangle = |x_2\otimes x_2\rangle$

Metrix representation in C^4 : CNOT = $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

Parenthesis Classically, a CNOT gate can emulate a COPY gate: 2 _____ 2 o — — × But in the quantum world, copying a

quantum state is impossible (no doning Hun). Let us solve this apparent contradiction...

Cansider
$$|\varphi\rangle \otimes |o\rangle$$
 as input state to the CNOT gate, with $|\varphi\rangle = \alpha_0 |o\rangle + \alpha_1 |1\rangle$:

CNOT $(|\varphi\rangle \otimes |o\rangle) = \text{CNOT}((\alpha_0 |o\rangle + \alpha_1 |1\rangle) \otimes |o\rangle)$
 $= \alpha_0 \text{CNOT}(o,o) + \alpha_1 \text{CNOT}(1,o)$
 $= \alpha_0 \text{CNOT}(o,o) + \alpha_1 \text{CNOT}(o,o)$
 $= \alpha_0 \text{CNOT}($

Axiam 3: Measurement postulate If an isolated quantum system is in state 14> e H= C2" and one observes the system through a measure apparatus, described by an orthonormal basis { 140, 14, 1... 14, 1... } of De (note that in this cause, we will always consider the computational basis),

then the autcane of the measurement is given by 14:> (0 & i < 2"-1) with probability prob(i) = 1 < 4: 14>12 Note that te that $\frac{2^{n-1}}{\sum_{i=0}^{2^{n-1}} \operatorname{prob}(i)} = \frac{2^{n-1}}{\sum_{i=0}^{2^{n-1}} \langle \varphi_i | \psi \rangle \langle \varphi_i | \psi \rangle}$ $= \sum_{i=0}^{\infty} \langle \psi | \psi_i \rangle \langle \psi_i | \psi \rangle = \langle \psi | \left(\sum_{i=0}^{2^{n-1}} | \psi_i \rangle \langle \psi_i | \right) | \psi \rangle$ = <4/IT/4>=1

Observe that 19:><9:1= (0.00) = ith raw The column is a rank-are matrix uhich is also a projector matrix (an 19:>) (later in the cause, we will see a) more general definition of measurement) \ with projectors.

Graphical representation:
$$|\varphi\rangle = \frac{1}{|\varphi\rangle}$$

$$|\varphi\rangle = \frac{1}{|\varphi\rangle}$$
and with the addition of a quantum circuit U :
$$|\varphi\rangle = \frac{1}{|\varphi\rangle}$$

Axian 4: Camposition of quantum systems 54stern 1: Na qu'bits Hen= (C2) (dimension 2") System 2: N2 qubits H2= (C2) (diviension 2"2) -> n1+n2 qubits H= He H2 = (C2) &(n1+n2) (du. 2 n1+n2)

Product states and entangled states

Not all states in He can be written as

14>8142>: these are product states

$$|0,0\rangle = |0\rangle \otimes |0\rangle$$
 $\frac{1}{\sqrt{2}}(|0,1\rangle + |0,0\rangle) = |0\rangle \otimes (\frac{1}{\sqrt{2}}(|1\rangle + |0\rangle))$
 $\frac{1}{2}(|0,0\rangle + |0,1\rangle + |1,0\rangle + |1,1\rangle) = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Counter-examples are entangled states:

 $\frac{1}{\sqrt{2}}(|0,0\rangle + |1,1\rangle)$ Bell state $\pm |1,0\rangle \otimes |1,0\rangle + |1,0\rangle$

Easy criterian: $|0,0\rangle + |0,0\rangle + |0,0\rangle + |1,0\rangle + |0,0\rangle + |1,0\rangle + |1,0\rangle$

Examples in H= C2 & C2: (2 qubits)

Quantum circuits (David Deutsch)

Remember that a quantum circuit operating.

an in qubits can always be represented by

a 2" × 2" unitary matrix U.

1) 1-qubit gates (
$$H = \mathbb{C}^2$$
)

• NOT gate: $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

I we will keep this notation from now on

• Hadamard gate:
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

 $SH(0) = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = |+\rangle$

$$\begin{cases} H | 1 \rangle = \sqrt{2} (|0\rangle + |1\rangle) = |+\rangle \\ H | 1 \rangle = \sqrt{2} (|0\rangle - |1\rangle) = |-\rangle \\ | \varphi \rangle = \varphi_0 | 0 \rangle + \varphi_1 | 1 \rangle \\ = \rangle H | \varphi \rangle = \varphi_0 | + \rangle + \varphi_1 | - \rangle \end{cases}$$

$$=) H | \varphi \rangle = \alpha_0 | + \rangle + \alpha_1 | - \rangle$$

$$= \frac{\alpha_0 + \alpha_1}{\sqrt{2}} | 0 \rangle + \frac{\alpha_0 - \alpha_1}{\sqrt{2}} | 1 \rangle$$

Observe that H=Ht and HHt=I (unitary matrix)

· Phase gates Z, S and T: (= unitary matrices also!)

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi} \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{pmatrix} \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

$$= -1$$

$$Z | o \rangle = | o \rangle$$
, $Z | 1 \rangle = (-1) | 1 \rangle$
 $| \varphi \rangle = | \alpha_0 | o \rangle + | \alpha_1 | 1 \rangle = | Z | \varphi \rangle = | \alpha_0 | o \rangle - | \alpha_1 | 1 \rangle$
(Same for S and T)

Observe that $Z = S^2 = T^4$ and $S = T^2$

Theorem (without proof) Any 2x2 unitary matrix U can be approximated by a product of gates H, S, T in the following sense: 48,0, 3 V a product of O(1) matrices H, S, T such that NU-VH < 8 (where N. N is some matrix norm)

· CNOT gate: CNOT = (1000)

CNOT
$$|00\rangle = |00\rangle$$
 CNOT $|01\rangle = |01\rangle$
CNOT $|10\rangle = |11\rangle$ CNOT $|14\rangle = |10\rangle$
 $|\psi\rangle = |\alpha_{00}||00\rangle + |\alpha_{01}||01\rangle + |\alpha_{10}||10\rangle + |\alpha_{11}||11\rangle$
 $=> (NOT |\psi\rangle = |\alpha_{0c}||00\rangle + |\alpha_{01}||01\rangle + |\alpha_{10}||11\rangle + |\alpha_{11}||10\rangle$
A input & autiput states \neq product states in general!

12) (2)

· Controlled - U gate: (where U = 2x2 unitary matrix)

$$|z\rangle - |z\rangle$$

$$|y\rangle - |u\rangle$$

$$|u\rangle - |z\rangle$$

$$|z\rangle - |z\rangle$$

$$|z\rangle$$

$$|z\rangle - |z\rangle$$

$$|z\rangle$$

$$|z\rangle - |z\rangle$$

$$|z\rangle$$

3) Multiple qubit gates

Matrix representation -> exercises!

Remark

- Classically, it is not possible to create a Toffoli gate from CNOT & 1-bit gates.
- In the quantum world, this is possible

 (Using more precisely CNOT, H, T&S gates)

 -> exercises!

· Multicantrol gates de= C2n+1

 $|x_1\rangle = |x_1\rangle$ $|x_2\rangle = |x_2\rangle$ $|x_1\rangle = |x_2\rangle$ $|x_1\rangle = |x_2\rangle$ $|y\rangle = |u\rangle = |u\rangle$

realization with n=3 -> exercises!

approximated (with arbitrary precision) by a circuit made only of gates T, S, H & CNOT. The number of gates needed for this approximation depends on the unitary matrix U (may be exp. in n). Remark: Without the Tgate, it can be shown that 10 quantum advantage can be obtained over classical (= GoHesman-Knill Hun)

Theorem (A. Barenco & al.) (without proof)

Any 2" × 2" unitary matrix U can be