Quantum computation: lecture 1

- . General introduction
- · Classical circuits Post's theorem
- . Reversible gates
- . Linear algebra in Dirac's notation

Introduction: Chronology 80's: - Feynman: idea that using quantum properties of matter at a microscopic level could help compute more efficiently - Bennett, Wiesner, Deutsch: quantum chan.s 905: - quantum algorithms (Deutsch-Josza, Sman, Bernstein-Vouzirani, Shar, Grover)

2005: realization of quantum computers ...

Classical circuits

Let $f: \{20,1\}^n \longrightarrow \{0,1\}^m$ be a Boolean function. $(x_1...x_n) \longmapsto (y_1...y_m) = f(x_1...x_n)$

Does there exist a classical circuit computing in an automated manner the value of f for every input $(x_1 - x_n)$?

a) Not gate:
$$x - [Not] - f(x) = x = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x = 1 \end{cases}$$
(equivalent to: $x - [xox] - f(x) = xe(1 = x)$

b) AND gate:
$$x_1 - x_1 - x_2 = x_1 - x_2$$

C) OR gate:
$$x_1 - GR - f(x_1, x_2) = x_1 \lor x_2$$

= 1 iff $x_1 = 1$ or $x_2 = 1$
NB: this is the non-exclusive or

d) Copy gare: x - copy - x f(x) = (x, x)NB: not really a gate, as it can be realized physically by jaining two wires together

Example of a circuit for f(x1, x2, x3)= (\overline{\infty}, 1\overline{\infty}) v(\infty, 1\overline{\infty}) Z1 — COPY NOT $\frac{1}{1} \int_{-\infty}^{\infty} dx dx = \int_{-\infty}^{\infty} f(x_1, x_2, x_3)$

AND -

Formal definition of a Bodean circuit

A Bookean circuit is a directed, acyclic graph (DAG) with n-gubits input and m-gubits aut put, whose vertices are logic gates and edges are wres.

Theorem (Emil Post, 1921) Every Boolean function f can be realized by a Bodean circuit made only of the elementary gates AND, OR, NOT and COPY.

This theorem therefore implies that this set of 4 gates is universal.

Let f: {0,13" -> {0,13" be a Boolean function 1) f = (f1, ..., fm) in general, but the theorem needs only to be proven for m=1 because: 21 - CAPY - F1 -Dan - Copy fun

2) Consider those vectors
$$a^{(1)} ... a^{(k)} \in \{0,1\}^n$$
 such that $\{f(a^{(j)}) = 1 \ \forall 1 \le j \le k \}$ of $\{f(b) = 0 \ \forall b \neq a^{(i)} - a^{(k)} \}$ and define $C_a(x) = \{1 \ \text{if} \ x = a \}$ Then $f(x) = C_{a^{(i)}}(x) \ \forall x = a \}$ or $\{x \in \{0,1\}^n \}$ or $\{x \in \{0,1\}^n \}$ or $\{x \in \{0,1\}^n \}$

3) Observe now that for a $\in \{0,1\}^n$:

 $C_{a}(x) = \phi_{a_{1}}(x_{1}) \wedge \dots \wedge \phi_{a_{n}}(x_{n})$ AND'swhere $\phi_{a_{j}}(x_{j}) = 1_{\{x_{j} = a_{j}\}} = \begin{cases} x_{j} & \text{if } a_{j} = 1\\ \overline{x_{j}} & \text{if } a_{j} = 0 \end{cases}$

So the camputation of $f(x_1..x_n)$ can be realized exclusively with Copy, OR, ANDE NOT gates. Ineversibility The gates AND, OR & COPY are incuersible: x_1 x_2 x_3 x_4 x_4 x_5 x_4 x_5 x_5 but its inverse deletes a bit; physically, it dissipates heat = irreversible process!

Reversible gates

In quantum circuits, irreversibles gates are forbidden. Fortunately, the previous gates can be emulated by reversible gates:

1) NOT gate:
$$\infty - [NOT] - f(x) = \infty = 1 = \overline{x}$$
is obviously reversible (apply it twice to recover the initial state)

$$x - C-NoT - x$$
 $y - C-NoT - y \oplus x$

Equivalent symbol:

$$f(x,y) = (x, y \in x)$$

$$\xi f(0,y) = (0,y)$$
 $\xi f(1,y) = (0,y)$
 $\xi f(1,y) = (0,y)$

This gate is also reversible (again, apply it truice)

 $(f(1,1,2) = (x,y,201) = (x,y,\overline{z})$ Equivalent symbol: x = x x = x y = y z = 0 x = x (apply it twice) x = x x = x

All previously seen gates can be retrieved

from these 3 reversible gates: (use red
input/output)

1) NOT: obviously...

3) $GR: \mathcal{Z} \longrightarrow NOT \longrightarrow \overline{\mathcal{Z}} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}$

So the set of 3 gates NOT, C-NOT, CC-NOT is also universal, according to Post's Hmm. Note that actually, the NOT & C-NOT gates can themselves be retrieved from CC-Nor gates; but the reciprocal statement is wrong.

Linear algebra in Dirac's notation

The state of a quantum system is described by a unit vector in a Hilbert space Je (on C). In this cause, we will only consider the finitedimensional Hilbert space Il = C" with N=2" (n = number of qubits). In particular, the state of a single qubit is a unit vector in \mathbb{C}^2 .

Thustration: (achially, 182) 1 state "1" Superposition of "1" & "0" state "0" The whole idea of quantum computation is to work with qubits in these superposed states in order to perform simultaneous

Camputations.

Dirac's notation

• ket":
$$|\varphi\rangle = \begin{pmatrix} \alpha_0 \\ \vdots \\ \alpha_{N-1} \end{pmatrix} \in \mathbb{C}^N$$
 column vector , confex-conjugate . "bra": $\angle \varphi = (\overline{\alpha}_0, \ldots, \overline{\alpha}_{N-1})$ raw vector

• Scalar product between $|\varphi\rangle = \begin{pmatrix} 00 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \begin{pmatrix} 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \langle 00 \\ 10 \\ 10 \\ 10 \end{pmatrix} & |\varphi\rangle = \langle 00 \\ 10 \\ 10 \\ 10 \\ 10 \end{pmatrix} &$

Properties:

Positivity:
$$\langle \varphi | \varphi \rangle = \sum_{i=0}^{N-1} |\alpha_i|^2 \geq 0$$

· Strict positivity:
$$\angle \varphi | \varphi \rangle = 0$$
 iff $| \varphi \rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

. Symmetry:
$$\langle \psi | \psi \rangle = \sum_{i=0}^{N-1} \overline{\beta}_i \, \alpha_i = \sum_{i=0}^{N-1} \overline{\alpha}_i \, \beta_i = \overline{\langle \psi | \psi \rangle}$$
. Bilinearity:

 $241(\alpha 14) + \beta 142) = \frac{N-1}{i=0} \overline{q_i}(\alpha \beta_{ni} + \beta \beta_{2i}) = ...$

Computational basis of $\mathcal{H} = \mathbb{C}^{N}$ ($N=2^{n}$) $e_{i} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = i^{H} postion = 1 \times_{1} \times_{2} ... \times_{n} > 0 \le i \le N-1$ where $x_{1} x_{2} ... x_{n} = betary representation of i$

Observe that
$$\langle \chi_n' ... \chi_n' | \chi_n ... \chi_n \rangle = \int_{\chi_n' \chi_n} ... \int_{\chi_n' \chi_n} \langle i, \xi | \chi_1 ... \chi_n \rangle$$
, $\chi_n ... \chi_n \in \{0,1\}\}$ is an orthogonal basis)

Also, any $| \varphi \rangle \in \mathbb{C}^N$ can be unition as

 $| \varphi \rangle = \sum_{\chi_1 ... \chi_n \in \{0,1\}} d\chi_n ... \chi_n | \chi_{n_1} ... \chi_n \rangle$
 $= \sum_{\chi_1 ... \chi_n \in \{0,1\}} d\chi_1 | \chi_{n_1} | \chi_{n_2} | \chi_{n_2$

$$e_0 = \binom{1}{0} = |0\rangle$$
 $e_1 = \binom{0}{1} = |1\rangle$

unit vector
$$\Leftrightarrow |a_0|^2 + (a_1|^2 = 1)$$

•
$$N=2$$
 ($\leftarrow>N=2^2=4$)

$$| \varphi \rangle = \alpha_{00} | \alpha_{0} \rangle + \alpha_{01} | \alpha_{10} \rangle + \alpha_{10} (10) + \alpha_{11} | \alpha_{00} |^{2} + | \alpha_{01} |^{2} + | \alpha_{10} |^{2} + | \alpha_{11} |^{2} = 1$$

Tensor product Let Hy = Czm Hilbert space for no qubits The C2" Hilbert space for no qubits

H= H1 & H2 = $\mathbb{C}^{2^{n_1}}$ $\mathbb{C}^{2^{n_2}}$ $\mathbb{C}^{2^{n_1+n_2}}$ (isomorphic)

= vector space of dimension $2^{n_1+n_2}$ Spanned

by all basis elements $|x,y\rangle = |x\rangle \otimes |y\rangle$ $\forall |\varphi\rangle \in \mathcal{J}\mathcal{E}$, it holds that $|\varphi\rangle = \underbrace{\sum_{0 \leq x \leq 2^{n}1}}_{0 \leq x \leq 2^{n}1} \alpha_{x,y} |x,y\rangle$ unit vector iff $\underbrace{\sum_{x,y}}_{x,y} |\alpha_{x,y}|^{2} = 1$

Important remark

- · Every element 14> in H=H18H2 can be written as a linear cambination of the basis elements 12,4>
- But not every element 19> M H can be written in the product form 19> 80 192> (those are called "product states")

Conjugation in Histlz:

Ket $|q_1\rangle \otimes |q_2\rangle$ — bra $< q_1 | \otimes < q_2 |$ A the same order is kept!

Scalar product in H18 H2:

So $(x,y'|x,y) = (x'|x) \cdot (y'|y) = \delta_{x'x} \cdot \delta_{yy}$

Example:
$$\Re R_1 = \mathbb{C}^2$$
, $\Re R_2 = \mathbb{C}^2$, $\Re R_1 = \Re \mathbb{R} + \mathbb$

binary
$$|0,1\rangle = |0\rangle\otimes|1\rangle = {1 \choose 0}\otimes{0 \choose 1} = {0 \choose 0} = e_1$$

represent $|1,0\rangle = |1\rangle\otimes|0\rangle = {0 \choose 1}\otimes{0 \choose 1} = {0 \choose 1} = e_2$
tations! $|1,1\rangle = |1\rangle\otimes|1\rangle = {0 \choose 1}\otimes{0 \choose 1} = {0 \choose 1} = e_3$