Quantum computation: lecture 1

- General introduction
- Classical circuits - Post's theorem
- Reversible gates
- Linear algebra in Diracis notation

Introduction: Chronology
80's:-Feynman: idea that using quantum properties of matter at a microscopic level calld help caupute mare efficiently

- Bennett, Wiesner, Deutsch: quantuun circu.s

90's: - quantum algaritums (Deutsch. Iosza, Sima, Bernstein-Vazirani, Shor, Grover)
2000's: realization of quantum camputers...

Classical circuits
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a Boolean function.

$$
\left(x_{1} \ldots x_{n}\right) \mapsto\left(y_{1} \ldots y_{m}\right)=f\left(x_{1} \ldots x_{n}\right)
$$

Does there exist a classical circuit computing in an automated manner the value of f for every input $\left(x_{1} \ldots x_{n}\right)$?

Examples of simple circuits (=elementary gates) and associated Boolean functions
a) NoT gate: x NoT- $f(x)=\bar{x}= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } \bar{x}=1\end{cases}$ (equivalent to: $\begin{aligned} & x-\text { XOR }-f(x)=x \oplus 1=\bar{x} \text {) } \\ & 1-10\end{aligned}$
b) AND gate:

$$
\begin{aligned}
& x_{1}-\text { AND }-f\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2} \\
& x_{2}-1 \text { ff } x_{1}=1 \text { and } x_{2}=1
\end{aligned}
$$

c) OR gate:

$$
\begin{aligned}
& x_{1}-O R-f\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2} \\
& x_{2}-O R \\
&=1 \text { iff } x_{1}=1 \text { or } x_{2}-1
\end{aligned}
$$

NB: this is the nan-exclusive or
d) Copy gate:

$$
x-\operatorname{copy}^{-x} \quad f(x)=(x, x)
$$

NB: net really a gate, as it can be realized physically by janing two wires together

Example of a circuit for

Formal definition of a Bodean circuit
A Bookan circuit is a direded, acyclic graph (DAG) with n-qubits input and m-qubits ait put, whose vertices are logic gates and edges are wires.

Theorem (Emil Post, 1921)
Every Boolean function f can be realized by a Bodean circuit made only of the elementary gates AND, OR, NOT and CoPy.

This theorem therefore implies that this set of 4 gates is universal.

Proof
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a Boolean function

1) $f=\left(f_{1}, \ldots, f_{m}\right)$ in general, but the theorem needs only to be proven for $m=1$ because:

2) Consider those vectors $a^{(1)} \ldots a^{(k)} \in\{0,1\}^{n}$ such that $\begin{cases}f\left(a^{(j)}\right)=1 & \forall 1 \leq j \leq k \\ f(b)=0 & \forall b \neq a^{(1)} \ldots a^{(k)}\end{cases}$ and define $C_{a}(x)= \begin{cases}1 & \text { if } \frac{\text { vectors! }}{x=a} \\ 0 & \text { otherwise }\end{cases}$ Then $f(x)=C_{a^{(1)}}(x) \vee \ldots \vee C_{a^{(21)}}(x)$ fris
3) Observe nav that for $a \in\{0,1\}^{n}$:

$$
C_{a}(x)=\phi_{a_{1}}\left(x_{1}\right) \wedge_{\hat{A N D}^{\pi}}^{\ldots} \phi_{a_{n}}\left(x_{n}\right)
$$

where $\phi_{a_{j}}\left(x_{j}\right)=1\left\{x_{j}=a_{j}\right\}= \begin{cases}x_{j} & \text { if } a_{j}=1 \\ x_{j} & \text { if } a_{j}=0\end{cases}$
NOT
So the computation of $f\left(x_{1} \ldots x_{n}\right)$ can be realized exclusively with CoPy, OR, AND\& NoT gates.

Irreversibility
The gates AND, OR \& Copy are irreversible:

$x-\operatorname{cop} \boldsymbol{x}^{-}-x$ is logically reversible: $x-\operatorname{cop}^{-1}-x$
but its inverse deletes a bit: physically, it dissipates heat $=$ irreversible process!

Reversible gates
In quantum circuits, irreversibles gates are forbidden. Fortunately, the previous gates can be emulated by reversible gates:

1) NOT gate: x NoT- $f(x)=x \oplus 1=\bar{x}$ is obviously reversible (apply it twice to recover the initial state)
2) Controlled-NOT (C-NOT) gate

Equivalent symbd:

$$
\begin{aligned}
& f(x, y)=(x, y \oplus x)
\end{aligned} \begin{aligned}
& f(0, y)=(0, y) \\
& f(1, y)=(0, y \oplus 1)=(1, \bar{y})
\end{aligned}
$$

This gate is also reversible (again, apply it twice)
3) Toffdi gate (or CC-NOT gate)

$$
\begin{aligned}
& x-(c \cdot N O T-y \\
& y-z \oplus(x \wedge y) \\
& z-f(x, y, z)=(x, y, z \oplus(x \wedge y)) \\
& \left\{\begin{array}{l}
f(x, y, z)=(x, y, z) \text { as long as } x=0 \text { or } y=0 \\
f(1,1, z)=(x, y, z \oplus 1)=(x, y, \bar{z})
\end{array}\right.
\end{aligned}
$$

Equivalent symbol:
$x=\left\{\begin{array}{l}x \\ y=[\\ z=(x \wedge y)\end{array}, ~\right.$

Again a reversible gate (apply it twice)

All previously seen gates can be retrieved fran these 3 reversible gates: ((use red inputlourput)

1) NOT : obviously...
2) AND:

3) $O R$:

4) Copy:

So the set of 3 gates NOT, C-NOT, CC-NOT is also universal, according to Post's thm. Note that actually, the NOT \& C-NOT gates can themselves be retrieved from CC-Nor gates; but the reciprocal statement is wrong.

Linear algebra in Dirac's notation
The state of a quantum system is described by a unit vector in a thibert space He (on ©). In this carse, we will only consider the finitedimensional Hilbert space $H=\mathbb{C}^{N}$ with $N=2^{n}$ ($n=$ number of quits). In particular, the state of a single quit is a unit vector in \mathbb{C}^{2}.

Illustration:

The while idea of quantum computation is to work with quits in these superposed states in order to perform simultanears computations.

Dirac's notation

- "ket" : $|\varphi\rangle=\left(\begin{array}{c}\alpha_{0} \\ \vdots \\ \alpha_{N .0}\end{array}\right) \in \mathbb{C}^{N}$ column vector
- "bra": $\langle\varphi|=\left(\bar{\alpha}_{0}, \ldots, \frac{\alpha_{N-1}}{}\right.$ camplex-conjugate
- scalar product between $|\varphi\rangle=\left(\begin{array}{c}\alpha_{0} \\ 1 \\ \alpha_{N-1}\end{array}\right) \&|\varphi\rangle=\left(\begin{array}{c}\beta_{0} \\ \vdots \\ \beta_{N-1}\end{array}\right)$

$$
\langle\varphi \mid \psi\rangle=\sum_{i=0}^{N-1} \bar{\alpha}_{i} \beta_{i}, \||\varphi\rangle \|=\sqrt{\langle\varphi \mid \varphi\rangle}
$$

"braket"
norm

Properties:

- Positivity: $\langle\varphi \mid \varphi\rangle=\sum_{i=0}^{N-1}\left|\alpha_{i}\right|^{2} \geqslant 0$
- Strict positivity: $\langle\varphi \mid \varphi\rangle=0$ of $|\varphi\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
- Symmetry:

$$
\langle\psi \mid \varphi\rangle=\sum_{i=0}^{N-1} \overline{\beta_{i}} \alpha_{i}=\overline{\sum_{i=0}^{N-1}} \bar{\alpha}_{i} \beta_{i}=\overline{\langle\varphi \mid \psi\rangle}
$$

- Bilinearity :

$$
\langle\varphi|\left(\alpha\left|\psi_{n}\right\rangle+\beta\left|\psi_{2}\right\rangle\right)=\sum_{i=0}^{N-1} \bar{\alpha}_{i}\left(\alpha \beta_{1 i}+\beta \beta_{2 i}\right)=\ldots
$$

$$
\ldots=\alpha \sum_{i=0}^{N-1} \bar{\alpha}_{i} \beta_{1 i}+\beta \sum_{i=0}^{N-1} \bar{\alpha} \beta_{i} \beta_{2 i}=\alpha\left\langle\varphi \mid \psi_{1}\right\rangle+\beta\left\langle\varphi \mid \psi_{2}\right\rangle
$$

Also:

$$
\begin{aligned}
& \left(\alpha\left\langle\varphi_{1}\right|+\beta\left\langle\varphi_{2}\right|\right)|\psi\rangle=\sum_{i=0}^{N-1} \overline{\left(\alpha \alpha_{1 i}+\beta \alpha_{2 i}\right)} \beta_{i} \\
& =\bar{\alpha} \sum_{i=0}^{N-1} \overline{\alpha_{1 i}} \beta_{i}+\bar{\beta} \sum_{i=0}^{N-1} \overline{\alpha_{2 i}} \beta_{i}=\bar{\alpha}\left\langle\varphi_{i} \mid \psi\right\rangle+\bar{\beta}\left\langle\varphi_{2} \mid \psi\right\rangle
\end{aligned}
$$

Computational basis of $H E=\mathbb{C}^{N} \quad\left(N=2^{n}\right)$

$$
e_{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right) \underset{\text { where } x_{1}^{H} x_{1} x_{2} \ldots x_{n}=\text { biliary representation of: }}{ }=\left|x_{1} x_{2} \ldots x_{n}\right\rangle \quad 0 \leq i \leq N-1
$$

Observe that $\left\langle x_{1}^{\prime} . . x_{n}^{\prime} \mid x_{1} \ldots x_{n}\right\rangle=\delta_{x_{1}^{\prime} x_{1}} \ldots \delta_{x_{n}^{\prime} x_{n}}$ (ie. $\left\{\left|x_{1} \ldots x_{n}\right\rangle, x_{n} \ldots x_{n} \in\{0, n\}\right\}$ is an orthogonal basis) Also, any $|\varphi\rangle \in \mathbb{C}^{N}$ can be written as

$$
\begin{aligned}
|\varphi\rangle & =\sum_{x_{1} \ldots x_{n} \in\{0,1\}} \alpha_{x_{1} \ldots x_{n}}\left|x_{1} \ldots x_{n}\right\rangle \\
& =\sum_{x \in\{9,1\}^{n}} \alpha_{x}|x\rangle \quad\binom{\text { shart-hand }}{\text { notation }}
\end{aligned}
$$

\& $\begin{gathered}\langle\varphi \mid \varphi\rangle=1 \\ \text { (unit vector) }\end{gathered}$ iff $\sum_{x_{1} \cdots x_{n} \in\left\{0_{0},\right\}}\left|\alpha_{x_{1} \cdots x_{n}}\right|^{2}=1$

Examples:

$$
\begin{aligned}
& n=1(\leftrightarrow N=2) \\
& e_{0}=\binom{1}{0}=|0\rangle \quad e_{1}=\binom{0}{1}=|1\rangle \\
&|\varphi\rangle=\alpha_{0} e_{0}+\alpha_{1} e_{1}=\binom{\alpha_{0}}{\alpha_{1}}=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle
\end{aligned}
$$

unit vector $\leftrightarrow\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1$

$\binom{$ previously seen }{ example }

$$
\begin{aligned}
& \text { - } n=2 \quad\left(\leftrightarrow N=2^{2}=4\right) \\
& e_{0}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)=\frac{|00\rangle}{\left\lvert\, \begin{array}{c}
\text { bun.rpp } \\
f_{i=0}
\end{array}\right.} \quad e_{1}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\underbrace{|01\rangle}_{\substack{\text { bin } \quad \text { 体 }}} \\
& e_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)=\underset{\substack{\text { bin.rep. } \\
\text { of } i=2}}{\left(\begin{array}{ll}
10
\end{array}\right)} \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\underset{\substack{\text { bon rep. } \\
\text { of } i=3}}{(11)} \\
& \left.|\varphi\rangle=\alpha_{00} \mid 00\right)+\alpha_{01}|01\rangle+\alpha_{10}(10)+\alpha_{n}(11) \\
& \left|\alpha_{\infty}\right|^{2}+\left|\alpha_{\infty}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
\end{aligned}
$$

Tensor product
Let $H L_{1}=\mathbb{C}^{2^{n}}$ Hilbert space for n_{1} quits
$H_{2}=\mathbb{C}^{2^{n_{2}}}$ Hilbert space for n_{2} quits

$$
H=H_{1} \otimes H_{2}=\mathbb{C}^{2^{m_{1}}} \otimes \mathbb{C}_{\text {(isamaphr) }}^{2^{m_{2}}} \mathbb{C}^{2^{m_{1}+n_{2}}}
$$

$=$ vector space of dimension $2^{n_{1}+n_{2}}$ spanned by all basis elements $|x, y\rangle=|x\rangle \otimes|y\rangle$ $\forall|\varphi\rangle \in \mathcal{H}$, it holds that $|\varphi\rangle=\sum_{0 \leq x \leq 2^{2 n 1}} \alpha_{x, y}|x, y\rangle$ unit vector iff $\sum_{x, y}\left|\alpha_{x, y}\right|^{2}=1 \quad 0 \leq y \leq 2^{n}=1$

Important remark

- Every element $|\varphi\rangle$ in $H=\mathscr{l}_{1} \otimes H l_{2}$ can be written as a linear combination of the basis elements $|x, y\rangle$
- But not every element $|\varphi\rangle$ in He can be written in the product form $\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle$ (those are called "product states")

Conjugation in $\mathrm{H}_{1} \& \mathrm{Hl}_{2}$:
Let $\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle \rightarrow$ bra $\left\langle\varphi_{1}\right| \otimes\left\langle\varphi_{2}\right|$ \triangle the same order is kept!
Scalar product in $\mathrm{He}_{1} \otimes \mathrm{H}_{2}$:

$$
\begin{aligned}
& \left(\left\langle\varphi_{1}\right| \otimes\left\langle\varphi_{2}\right|\right)\left(\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle\right)=\left\langle\varphi_{1} \mid \varphi_{1}\right\rangle \cdot\left\langle\varphi_{2} \mid \varphi_{2}\right\rangle \\
& \text { So }\left\langle x^{\prime} y^{\prime} \mid x, y\right\rangle=\left\langle x^{\prime} \mid x\right\rangle\left\langle y^{\prime} \mid y\right\rangle=\delta_{x^{\prime} x} \cdot \delta_{y^{\prime} y}
\end{aligned}
$$

Example: $H_{1}=\mathbb{C}^{2}, X_{2}=\mathbb{C}^{2}, H=H H_{1} \otimes H X_{2} \sim \mathbb{C}^{5}$

$$
\begin{aligned}
& \left|\varphi_{1}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle \in \mathcal{H},\left|\varphi_{2}\right\rangle=\beta_{0}|0\rangle+\beta_{1}|1\rangle \in H l^{2} \\
& \left.\left|\varphi_{1}\right\rangle \otimes\left|\varphi_{2}\right\rangle=\alpha_{0} \beta_{0}|0,0\rangle+\alpha_{0} \beta_{1}|0,1\rangle+\alpha_{1} \beta_{0} \mid 1,0\right)+\alpha_{1} \beta_{1}|1,1\rangle
\end{aligned}
$$

(Note the specific farm of a product state!)

$$
\begin{aligned}
&|0,0\rangle=|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=e_{0} \\
& \text { binary }|0,1\rangle=|0\rangle \otimes|1\rangle=\binom{1}{0} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=e_{1} \\
& \text { represcen- } \backslash|1,0\rangle=|1\rangle \otimes|0\rangle=\binom{0}{1} \otimes\binom{1}{0}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=e_{2} \\
& \text { rations! }|1,1\rangle=|1\rangle \otimes|1\rangle=\binom{0}{1} \otimes\binom{0}{1}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=e_{3}
\end{aligned}
$$

