Problem 1: Multilinear Rank, Tensor Rank

Recall the formulas for the matricizatons:
$T_{(1)}=A\left(C \otimes_{K h R} B\right)^{T}$, where A and $C \otimes_{K h R} B$ are of dimensions $I_{1} \times R$ and $I_{2} I_{3} \times R$ respectively. Moreover for any matrices X, Y we have that:

$$
\operatorname{rank}(X Y) \leq \min \{\operatorname{rank}(X), \operatorname{rank}(Y)\}
$$

Thus:

$$
R_{1}=\operatorname{rank}\left(T_{(1)}\right) \leq \operatorname{rank}(A) \leq \min \left\{I_{1}, R\right\} \leq R
$$

By repeating the same argument for matrizications $T_{(2)}, T_{(3)}$ we conclude the proof.

Problem 2: Non-unicity of Tucker decomposition

Let $X=\left[\overrightarrow{x_{1}}, \ldots, \vec{x}_{R_{1}}\right], Y=\left[\overrightarrow{y_{1}}, \ldots, y{\overrightarrow{R_{2}}}_{2}\right]$, and $Z=\left[\overrightarrow{z_{1}}, \ldots,{\overrightarrow{R_{2}}}_{3}\right]$. Then, from the definitions of vectors $\overrightarrow{x_{p^{\prime}}}, \overrightarrow{y_{q^{\prime}}}, \overrightarrow{z_{r^{\prime}}}$, and from the orthogonality of the matrices $M^{(u)}, M^{(v)}, M^{(w)}$ it is easy to see that:

1. $U \cdot\left(M^{(u)}\right)^{T}=X \Rightarrow U=X \cdot M^{(u)} \Rightarrow \vec{u}_{p}=X \cdot M_{: p}^{(u)}=\sum_{p^{\prime}} M_{p^{\prime} p}^{(u)} \vec{x}_{p^{\prime}}$
2. $V \cdot\left(M^{(v)}\right)^{T}=Y \Rightarrow V=Y \cdot M^{(v)} \Rightarrow \vec{v}_{q}=Y \cdot M_{: q}^{(v)}=\sum_{q^{\prime}} M_{q^{\prime} q}^{(v)} \vec{q}_{q^{\prime}}$
3. $W \cdot\left(M^{(w)}\right)^{T}=Z \Rightarrow W=Z \cdot M^{(w)} \Rightarrow \vec{w}_{r}=Z \cdot M_{: r}^{(w)}=\sum_{r^{\prime}} M_{r^{\prime} r}^{(w)} \vec{z}_{r^{\prime}}$

Substituting \vec{u}_{p}, \vec{v}_{q} and \vec{w}_{r} in the Tucker decomposition expression we get:

$$
\begin{aligned}
& T=\sum_{p, q, r=1}^{R_{1}, R_{2}, R_{3}} G^{p q r} \vec{u}_{p} \otimes \vec{v}_{q} \otimes \vec{w}_{r}=\sum_{p, q, r=1}^{R_{1}, R_{2}, R_{3}} G^{p q r}\left(\sum_{p^{\prime}} M_{p^{\prime} p}^{(u)} \vec{x}_{p^{\prime}}\right) \otimes\left(\sum_{q^{\prime}} M_{q^{\prime} q}^{(v)} \vec{y}_{q^{\prime}}\right) \otimes\left(\sum_{r^{\prime}} M_{r^{\prime} r}^{(w)} \vec{z}_{r^{\prime}}\right)= \\
& \sum_{p^{\prime}, q^{\prime}, r^{\prime}=1}^{R_{1}, R_{2}, R_{3}} \sum_{p, q, r=1}^{R_{1}, R_{2}, R_{3}} G^{p q r} M_{p^{\prime} p}^{(u)} M_{q^{\prime} q}^{(v)} M_{r^{\prime} r}^{(w)} \vec{x}_{p^{\prime}} \otimes \vec{y}_{q^{\prime}} \otimes \vec{z}_{r^{\prime}}=\sum_{p^{\prime}, q^{\prime}, r^{\prime}=1}^{R_{1}, R_{2}, R_{3}} H^{p^{\prime} q^{\prime} r^{\prime}} \vec{x}_{p^{\prime}} \otimes \vec{y}_{q^{\prime}} \otimes \vec{z}_{r^{\prime}}
\end{aligned}
$$

where $H^{p^{\prime} q^{\prime} r^{\prime}}=\sum_{p, q, r=1}^{R_{1}, R_{2}, R_{3}} G^{p q r} M_{p^{\prime} p}^{(u)} M_{q^{\prime} q}^{(v)} M_{r^{\prime} r}^{(w)}$, which concludes the proof.

Problem 3: Whitening of a tensor

1. We have $M=U \operatorname{Diag}\left(d_{1}, \ldots, d_{K}\right) U^{T}$ and, by definition, $W:=U \operatorname{Diag}\left(d_{1}^{-1 / 2}, \ldots, d_{K}^{-1 / 2}\right)$. A direct computation gives:

$$
\begin{aligned}
W^{T} M W & =\operatorname{Diag}\left(d_{1}^{-1 / 2}, \ldots, d_{K}^{-1 / 2}\right)\left(U^{T} U\right) \operatorname{Diag}\left(d_{1}, \ldots, d_{K}\right)\left(U^{T} U\right) \operatorname{Diag}\left(d_{1}^{-1 / 2}, \ldots, d_{K}^{-1 / 2}\right) \\
& =\operatorname{Diag}\left(d_{1}^{-1 / 2}, \ldots, d_{K}^{-1 / 2}\right) \operatorname{Diag}\left(d_{1}, \ldots, d_{K}\right) \operatorname{Diag}\left(d_{1}^{-1 / 2}, \ldots, d_{K}^{-1 / 2}\right) \\
& =I .
\end{aligned}
$$

We used that the columns of U are orthogonal unit vectors: $U^{T} U=I$. By definition of \vec{v}_{i}, we have $V:=\left[\begin{array}{lll}\vec{v}_{1} & \cdots & \vec{v}_{K}\end{array}\right]=W^{T} \mu \operatorname{Diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{K}}\right)$ where $\mu:=\left[\begin{array}{lll}\vec{\mu}_{1} & \cdots & \vec{\mu}_{K}\end{array}\right]$. It also follows from the definition of M that $M=\mu \operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \mu^{T}$. Hence:

$$
\begin{aligned}
V V^{T} & =W^{T} \mu \operatorname{Diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{K}}\right) \operatorname{Diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{K}}\right) \mu^{T} W \\
& =W^{T} M W \\
& =I
\end{aligned}
$$

The matrix V is square and satisfies $V V^{T}=I$, thefore $V^{T} V=I$ meaning that the vector \vec{v}_{i} are orthonormal.
2. Because M is known we can compute the matrix W and use it to obtained the whitened tensor $T(W, W, W)=\sum_{i=1}^{K} \nu_{i} \vec{v}_{i} \otimes \vec{v}_{i} \otimes \vec{v}_{i}$ where $\nu_{i}=\lambda_{i}^{-1 / 2}$ and $\vec{v}_{i}=\sqrt{\lambda_{i}} W^{T} \vec{\mu}_{i}$. We have shown in the previous question that $\vec{v}_{1}, \ldots, \vec{v}_{K}$ are orthogonal unit vectors. Thus, we can use the tensor power method to recover each of the pair $\pm\left(\nu_{i}, \vec{v}_{i}\right)$ for $i \in[K]$. Because $\nu_{i}>0$ we can disambiguate the sign and determine $\left(\nu_{i}, \vec{v}_{i}\right)$ from $\pm\left(\nu_{i}, \vec{v}_{i}\right)$.
Now that all the $\left(\nu_{i}, \vec{v}_{i}\right)$ are known, we need to show that the whitening transformation can be inverted to give back $\left(\lambda_{i}, \vec{\mu}_{i}\right)$. The relation between λ_{i} and ν_{i} is easy to invert: $\lambda_{i}=1 / \nu_{i}^{2}$. To recover $\mu=\left[\begin{array}{lll}\vec{\mu}_{1} & \cdots & \vec{\mu}_{K}\end{array}\right]$, we need to invert the system of equations

$$
\begin{equation*}
V=W^{T} \mu \operatorname{Diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{K}}\right) \Leftrightarrow V \operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)=W^{T} \mu \tag{1}
\end{equation*}
$$

The matrix $W^{T}=\operatorname{Diag}\left(d_{1}^{-1 / 2}, \ldots, d_{K}^{-1 / 2}\right) U^{T}$ has full row rank and its Moore-Penrose pseudoinverse reads $\left(W^{T}\right)^{\dagger}=U \operatorname{Diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{K}}\right)$. Multiplying both sides of (1) by $\left(W^{T}\right)^{\dagger}$ yields:

$$
\begin{equation*}
\left(W^{T}\right)^{\dagger} V \operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)=U U^{T} \mu \tag{2}
\end{equation*}
$$

At this point we might be tempted to say that $U U^{T}=I$, yielding $\mu=\left(W^{T}\right)^{\dagger} V \operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)$. However, U is in general not a square matrix and we cannot conclude $U U^{T}=I$ from $U^{T} U=I$. This is only a minor setback. Note that (the left-hand side is the definition of M, the righthand side is its diagonalization):

$$
\mu \operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{K}\right) \mu^{T}=U \operatorname{Diag}\left(d_{1}, \ldots, d_{K}\right) U^{T}
$$

where μ, U are $D \times K$ full column rank matrices. It follows that $\operatorname{span}(\mu)=\operatorname{span}(U)$ and there exists a $K \times K$ matrix P such that $\mu=U P$. Hence, $U U^{T} \mu=U\left(U^{T} U\right) P=U P=\mu$ and (2) reads:

$$
\mu=\left(W^{T}\right)^{\dagger} V \operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)=U \operatorname{Diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{K}}\right) V \operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)
$$

We are thus able to recover μ from the knowledge of W, V and $\operatorname{Diag}\left(\nu_{1}, \ldots, \nu_{K}\right)$.

