Quantum cauputation: lecture 12
Error correcting codes (classical, first)

- Circuit with AND, OR, NOT gates each cauponent has probability p of failing (assume independence \& $p=$ same \forall component)

AND AND'

$$
p \rightarrow c p^{2}=p^{\prime}
$$

We want $p^{\prime}<p$, ie. $c p^{2}<p$, ie. $p<\frac{1}{c}$ So if it is possible to build an AND gate with $P<\frac{1}{c}$, then it is possible to build an AND' with $P^{\prime}<P$, and to repeat this an arbitrary number of times with $p, p^{\prime}, p^{\prime \prime} \ldots p^{(k)} \rightarrow 0$
$=$ Threshold theorem
NB: $p^{\prime \prime}=c p^{-2}=c\left(c p^{2}\right)^{2}=\frac{1}{c}(c p)^{4} ; p^{(k)}=\frac{1}{c}(c p)^{2^{k}}$ Caveat: majority gate to be built...

Let us now think about transmission of information (instead of ciraits):

$$
x=\left\{\begin{array}{l}
0 \\
1
\end{array} \rightarrow \text { channel } \rightarrow \text { observation } y \in\left\{\begin{array}{l}
0 \\
1
\end{array}\right\}\right.
$$

with $\mathbb{P}(x=y)=1-p$
Repetition code (laugh):

$$
x=\left\{\begin{array}{ll}
0 & \rightarrow 000 \\
1 & \rightarrow 111
\end{array} \rightarrow \begin{array}{c}
\text { channel } \\
\vdots
\end{array} \rightarrow \begin{array}{c}
\text { observation } y_{1} y_{2} y_{2} \\
\text { (independent for end }
\end{array}\right.
$$ (independent for each bit)

Hov to retrieve x from $y_{1} y_{2} y_{3}$?
(In general, look for the most probable x given $y y_{1} y_{2} y_{s}$)
Here: apply the majority rule:

$$
\begin{aligned}
& E_{x}: y_{1} y_{2} y_{3}=110 \rightarrow \text { actput } 1 \\
& y_{1} y_{2} y_{3}=01 \mathrm{C} \rightarrow \text { artput } 0
\end{aligned}
$$

What is the probability that we make a mistake?

$$
\begin{aligned}
& \mathbb{P}(\text { autpat }=1 \mid x=0 \text { is cent })=p^{3}+3 p^{2}(1-p)<p \\
= & \mathbb{P} \text { (output }=0 \mid x=1 \text { is sent }) 3 \text { bit flips } \quad 2 \text { biff fops if } p<\frac{1}{2}
\end{aligned}
$$

Here are some parameters:
$n=$ length of code words $=3$
$r=$ rate $=\frac{1}{3}$ (3 bits sent for 1 bit of information)
$d=$ distance $=3$
(= \# diff. bits in the codewords)

We want both large r and large lots of info/sec good error carrectizen

Binary codes of length n

- Code $e=$ subset of $F_{2}{ }^{n}$ $|e|=2^{k}$ in order to transmit k information bits ($k<n$)
- codewords should be separated by distance
$\geqslant 2 p n \quad\left(p_{n}=\right.$ average number of errors an one coldevend)
- decoding: look for nearest neighbour of the received sequence of bits

So

$$
\begin{array}{ll}
e=\left\{c_{1}, \ldots, c_{2 k}\right\} & \\
d=\min \left\{\operatorname{distance}\left(c_{i}, c_{j}\right):\right. & \left.c_{i}, c_{j} \in e\right\} \\
c_{i} \neq c_{j}
\end{array}
$$

$\Rightarrow E$ can correct up to $\left\lfloor\frac{d-1}{2}\right\rfloor$ errors
The name of the game is now to place the 2^{k} codewords in \mathbb{F}_{2}^{n} so that the minimum distance d is the largest possible.

- The 3 important parameters of the code are (n, k, d) :

- Lots of codewords in e; we need same structure \Rightarrow focus on linear codes, satisfying

$$
c_{i}, c_{j} \in E \Rightarrow \underset{(x \not 0)}{c_{i} \oplus c_{j} \in E}(=\text { subspace })
$$

Generator point of view:

$$
e=\left\{c \in \mathbb{F}_{2}^{n}: c=u \cdot G ; u \in \mathbb{F}_{2}^{k}\right\}
$$

$G=k \times n$ generator matrix
code e raw space of G
Ex: repetition code $e=\{000,111\}(=$ hear code)

$$
n=3, k=1, \quad G=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

(take then $u=(0)$ or $u=(1) \in F_{2}$)

Parity check view:

$$
e=\left\{c \in \mathbb{\pi}_{2}^{n}: H \cdot c^{\top}=0\right\}
$$

$H=(n-k) \times n$ parity check matrix $\left(\rightarrow \operatorname{dim}_{k}\right)$
Ex: $e=\{000,111\} \quad n=3, k=1, n-k=2$

$$
\begin{aligned}
& H=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \quad \text { indeed }: H \cdot C^{\top}=0 \\
& \text { for both } C=(000) \\
& \text { and } C=(111)
\end{aligned}
$$

Hamming code:

$$
\begin{aligned}
& k=4, n-k=3, n=2^{n-k}-1=7 \\
& H=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right) \quad\binom{\text { column }=\text { binary }}{\text { expansici of } j}
\end{aligned}
$$

This code has minimum distance $d=3$. Indeed:

- for linear codes, min distance $=\min$ weight of a non-zero codeword, as $d\left(c_{i}, c_{j}\right)=$ $d\left(0, \frac{\epsilon E}{c_{i} \oplus c_{j}}\right) \quad \forall i, j \quad$ (and $c_{i} \neq c_{j}$ iff $c_{i} \oplus c_{j} \neq 0$)
- $H C^{\top}=0$ implies at least weight $(c) \geqslant 1$, as H does not have a column of o's
- But it is also the case that weight $(C) \geqslant 2$ as H does not have identical colums.
- If weight $(C)=3$, then it is Mdeed possible that $M C^{\top}=0$ (take eg $C=(1110000)$ $\Rightarrow d=3$.

Error correction with this code: (新ydran $\left.\begin{array}{l}\text { decoding }\end{array}\right)$
Assume y is received $(=c+e)$:
2 err

$$
H \cdot y^{T}=H \cdot\left(c^{T}+e^{T}\right)=\frac{H \cdot c^{T}}{=0}+H \cdot e^{T}=H \cdot e^{T}
$$

If $e=(0010000)$, then $H \cdot e^{\top}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \rightarrow 3$: in this case, we know the error occurred in position 3.

Quantum error correction
Potential problems:

$$
0,1 \longrightarrow \text { state }|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

(1) repetition code? A no cloning theorem
(2) type of errors? continuous vector space!
(3) measurement destroys a state, potentially! states cannot be observed (nor corrected) ???

