
Biomass: biogases

BIOGAS

Sources for biogas generation

=> essentially wet wastes, too inefficient too burn:

organic industrial effluents
 <5% organic dry matter

• sewage 5%

farming residues10%

solid wastes (digesters, landfill) >20%

municipalities (≈20 m³/yr.person)
 MSW

industryISW

- >100 m³ biogas produced per tonne 'solid' waste (≈20% org. solids)
 (ca. 500 L biogas per kg organic dry matter)

When to *digest* waste?

Waste disposal scheme options, in particular for organics:

— incineration: for solid wastes

– composting: = aerobic; for farming (fertilising)

— methanisation: = anaerobic digestion

landfill: as a lesser option, when none of the other

options apply...; landfilling, however, is

restricted in the case of organic wastes

=> most appropriate for **liquid** wastes with an organic fraction

EU "waste-to-energy hierarchy"

Examples of waste-to-energy processes

Prevention

Preparing for re-use

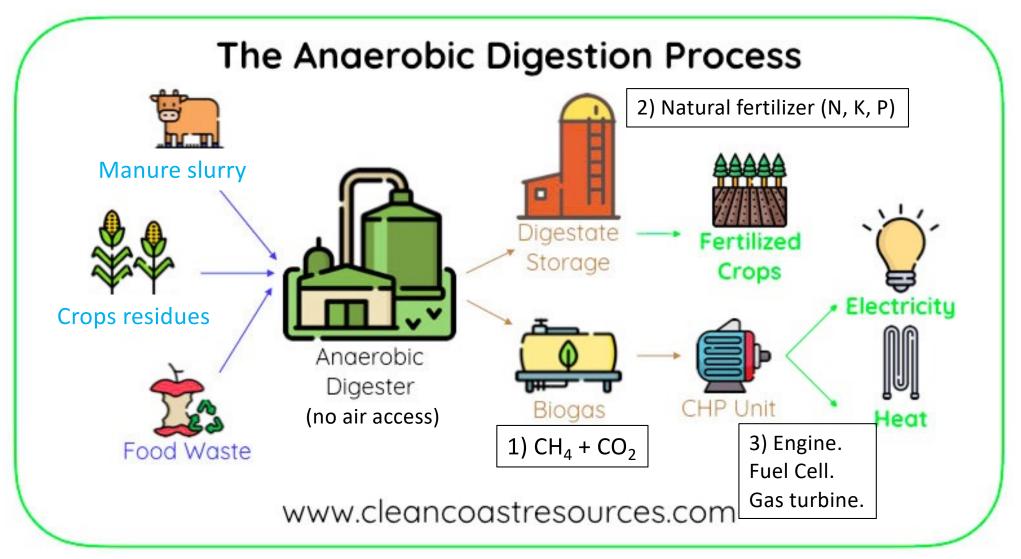
Recycling

Other Recovery

Disposal

Anaerobic digestion of organic waste where the digestate is recycled as a fertliser

Waste incineration and co-incineration operations with a high level of energy recovery Reprocessing of waste into materials that are to be used as solid, liquid or gaseous fuels


Waste incineration and co-incineration operations with limited energy recovery Utilisation of captured landfill gas

"The role of waste-to-energy in the <u>circular economy</u>", Brussels, 26.1.2017 COM(2017) 34 final

Anaerobic digestion - AD (1)

- =transformation of organic matter by microorganisms (bacteria) in absence of O₂
- internal reduction + oxidation breakdown of the biomass polymers (C-H-O) to the simplest building blocks :
 - CH₄ (fully reduced) + CO₂ (fully oxidized) => biogas
- mature market technology
- drawback: lignine is nearly undigestable, cellulose is difficult to digest
 - => AD is a slow process (10-20 days residence time), occurring at ≈35-55°C

Anaerobic digestion (AD) of biowaste

https://www.cleancoastresources.com/industry-resources/what-is-anaerobic-digestion

Digestion process (2)

4 distinct steps in time; using 3 different bacterial groups

1. Hydrolysis (uses exo-enzymes)

```
= the slowest of the 4 steps (<u>rate-determining</u>)
breaks solid org. matter down to liquified monomeres & dimeres:
cellulose → cellobiose + glucose
```

starch → maltose + glucose

2. Digestion

= formation of organic **acids** acetic / propionic / butyric acid (= $C_2/C_3/C_4$ -OOH), lactic acid, ethanol, and little H_2 and CO_2

Digestion process (3)

3. 'Acidogenesis'

higher acids break down to CH₃COOH (**acetic acid**), H₂ and CO₂, approximatively as in the overall reaction:

$$C_6H_{12}O_6 + 2H_2O \rightarrow 2 CH_3COOH + 2 CO_2 + 4 H_2$$

4 'Methanogenesis':

a. $2CH_3COOH \rightarrow 2CH_4 + 2CO_2$ (70-80% of CH_4 product)

b. $CO_2 + 4 H_2 \rightarrow CH_4 + 2 H_2O$ (20-30% of CH₄ product)

Reactions a & b take place upon different bacterial actions. These 2 parallel CH₄-synthesis reactions explain why biogas compositions typically are (60±5)% CH₄ and (40±5%) CO₂

Overall approximation: $C_6H_{12}O_6 \rightarrow 3CH_4 + 3CO_2$

Anaerobic digestion - AD (4)

- The main objective for <u>sewage and similar effluents</u> (e.g. food industry) is waste **treatment**, i.e. **depollution** of liquid streams that are too heavily charged in organics, which cannot be discharged directly into the aquatic ecosystem; hence biogas is here mainly a by-product (energy recovered to power the "depollution plant")
- However, in the case of largely untapped <u>farm waste</u>
 (manure, crop residues) and <u>MSW/ISW</u>, biogas is not a by product but an active <u>energy vector</u> (and especially for
 valorisation into electricity production, in gas <u>engines</u> or
 <u>fuel cells</u>)

Advantages of AD

- Biowastes become an energy source (=> biogas), not a burden.
- 2. Biogas is a local universal versatile fuel similar to natural gas, and therefore reduces (fossil) energy import (e.g. in agriculture), and reduces CO₂ emissions overall since it replaces fossil fuels.
- 3. Digesting the biowastes in a sealed tank, especially manure, instead of letting them freely rot (compost) in open air, will reduce uncontrolled CH₄ GHG emissions and instead recover the CH₄ as fuel in a controlled way.
 - agriculture in Switzerland contributes to 14% of overall GHG emissions of which
 61% as CH₄ (partly from the animals directly (enteric), partly from their manure).
- 4. Biodigestate is a natural fertilizer of superior quality than synthetic fertilizer (made from fossil fuels through e.g. industrial ammoniasynthesis): the soil absorbs it better and therefore releases less N₂O back to the atmosphere, therefore reducing N₂O GHG
- 5. The installation brings revenue to e.g. farmers, who become producers of biogas (renewable energy suppliers instead of fossil energy importers) and of natural fertilizer.

onfidential 11

Chemical formulae for biogas generation

'Buswell' formula:

$$C_a H_b O_c + \left[a - \frac{1}{4}b - \frac{1}{2}c \right] H_2 O \rightarrow \left(\frac{1}{2}a + \frac{1}{8}b - \frac{1}{4}c \right) C H_4 + \left(\frac{1}{2}a - \frac{1}{8}b + \frac{1}{4}c \right) C O_2$$

e.g. for **manure**, approximated as C₄H₈O₂ (butyric acid):

$$C_4H_8O_2 + [4-2-1]H_2O \rightarrow (2+1-\frac{1}{2})CH_4 + (2-1+\frac{1}{2})CO_2 = \frac{5}{8}CH_4 + \frac{3}{8}CO_2$$

'Buswell-Boyle' (with N, S):
$$C_a H_b O_c N_d S_e + \frac{1}{4} [4a - b - 2c + 3d + 2e] H_2 O$$

$$\rightarrow \frac{1}{8} (4a + b - 2c - 3d - 2e) C H_4$$

$$+ \frac{1}{8} (4a - b + 2c + 3d + 2e) C O_2$$

$$+ dN H_3 + e H_2 S$$

Remark: CO₂, NH₃, H₂S dissolve better in H₂O than CH₄, hence the recovered gas is actually methane-enriched

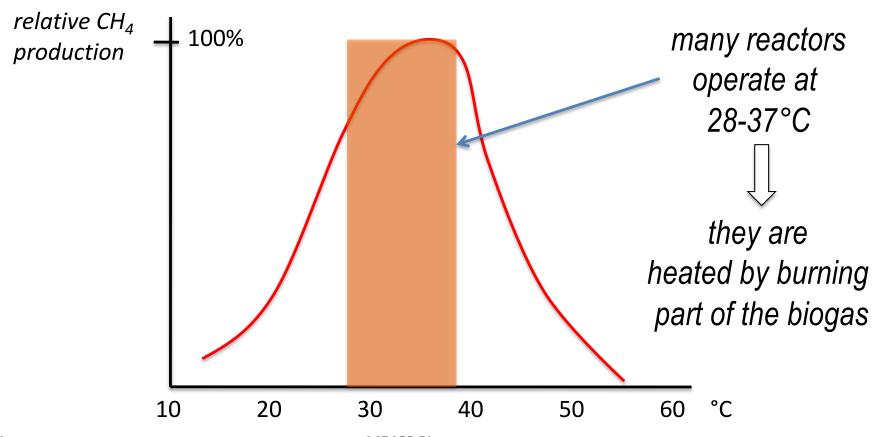
Digestion is a batch process

 once a day, fresh organic substrate is filled in, and digested matter is removed from a batch reactor

- mean residence time (days):
 - saturation after 20 days

$$\theta = \frac{V_{reactor}[m^3]}{V_{org}[m^3/d]}$$

daily specific load (kg/m³.d)


$$M_{day} = V_{org} \cdot \frac{M}{V} = \frac{M}{\theta}$$

- M can designate fresh or dry organic matter
- biogas production can be expressed as:

$$m^3$$
biogas / m^3 reactor m^3 biogas / $kg_{org.matter}$

Digestor reactor temperature

Enzyme	Optimal T range		
'Psychrophilic'	20°C		
'Mesophilic'	20-45°C		
'Thermophilic'	>45°C		

Experience values

- The determining factors in biogas production are:
 - temperature; part of the biogas is used to heat the reactor; the biogas production rate saturates at 40°C
 - residence time (days); saturates at 20 days
 - organic matter charge (usually 3-10%)

Production	Unit	Cows	Pigs
per animal and day	m _{biogas} / /head.day	1.3 <u>+</u> 0.3	1.5 <u>+</u> 0.6
per mass	$m_{biogas}^{\it 3} / kg_{org.matter}$	0.3 <u>+</u> 0.05	0.5 <u>+</u> 0.05

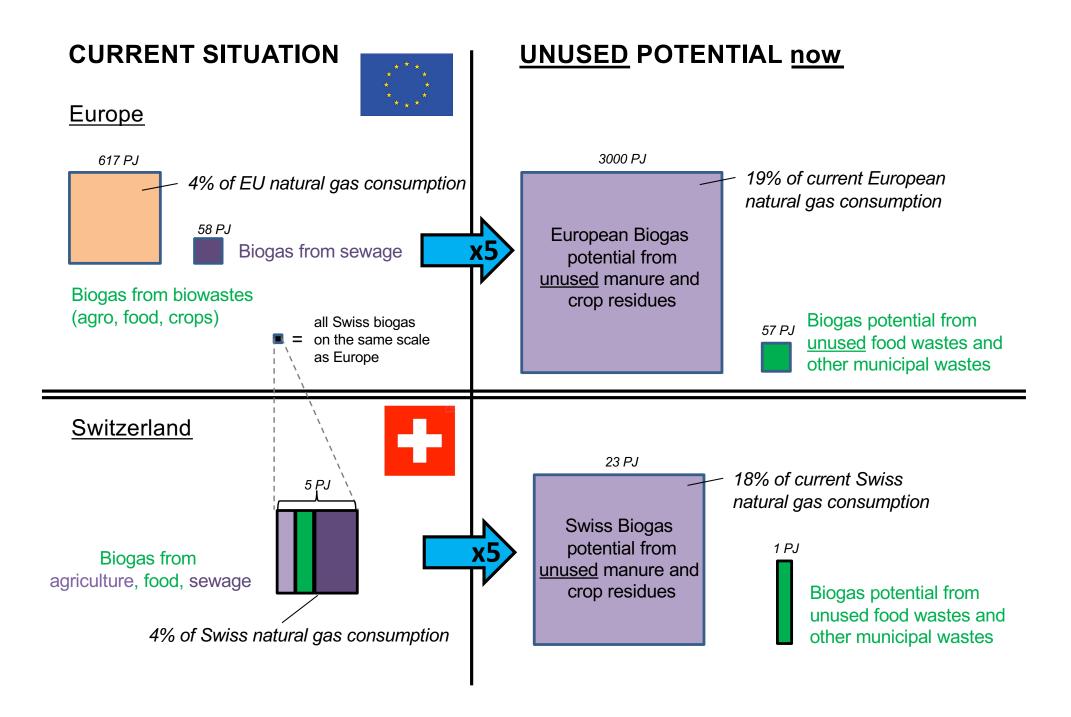
→ 1.5 m³/day @ 20 MJ/m³ = 30 MJ/day ≈ 8 kWh/day

= equivalent to 2 m² of thermal solar collectors

Any farm animal produces ca. 18-20 kg of manure per year per kg of its own body weight

Biogas vs. natural gas

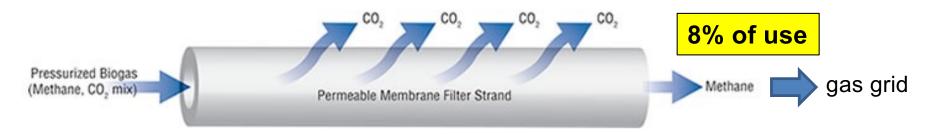
Property	Unit	NG	BG (60% CH ₄)
LHV	MJ/m^3	36	21.5
Density	kg/m³	0.82	1.21
Ignition T	°C	620	700
Ignition speed in air	m/s	39	0.25
Air factor	-	9.5	5.7
Exhaust, max CO ₂	Vol%	11.9	17.8
Exhaust, dew point	°C	59	60-160


Some characteristics of biogas production

- the digestate is a good quality **fertilizer** (2% nitrogen)
 - better than (air-)composted waste (<1% nitrogen)
- else N-fertilizer has to be imported, which is made from natural gas in huge plants and has a very large impact: 1% of global GHG emissions and 1.5% of global energy consumption.
- a significant part of the produced biogas is used for heating of the digester and the installation itself (farm,...)
- (cold) desulfurisation of the biogas is done with FeCl₃ solution (to precipitate FeS); sulfur is removed as it is poisonous (for the atmosphere but also in downstream CHP engines or fuel cells)

Biogas application examples (CH)

Source	Biogas m³/day	% CH ₄	% yr load	Installed power	Effi- ciency
Farm 37 cattle	70	57	60	5 kW _{el}	18%
Sewage 30'000 p.	1000	65	65	130 kW _{el}	28%
MSW 80'000 p.	1300	60	95	90 kW _{el}	25%

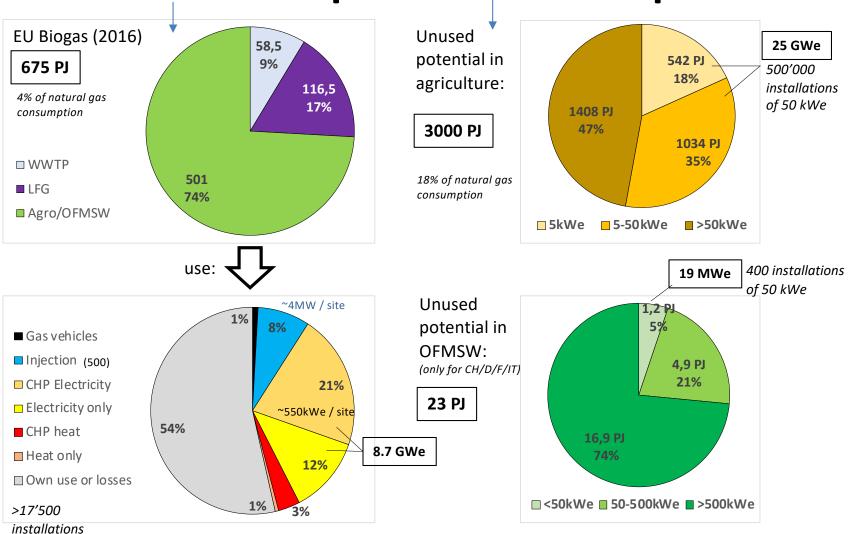

^{=&}gt; small power sites (gas engines); low (electrical) efficiency

Current uses of biogas

There are presently 2 main ways to valorise biogas (CH₄/CO₂) as fuel:

1) Separate CH₄ from CO₂ and inject the CH₄ into the natural gas grid.

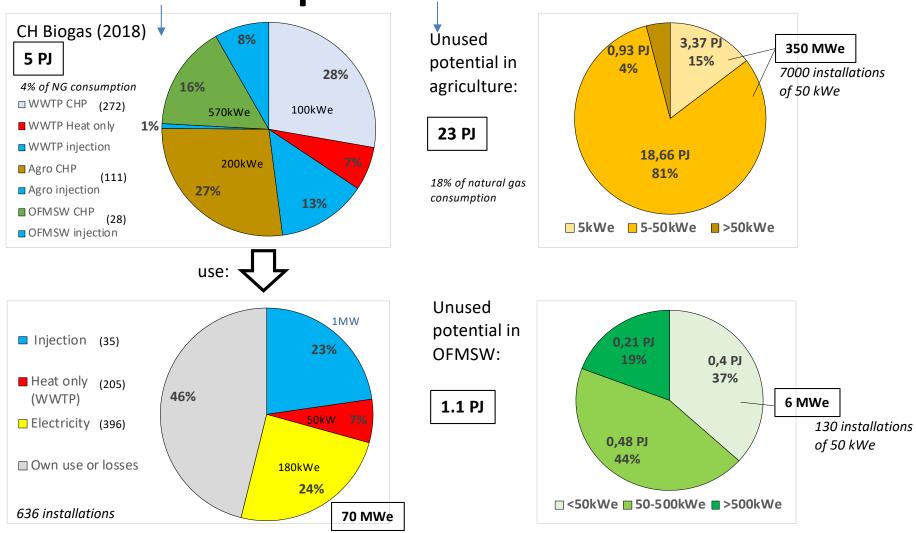
2) Burn the biogas into a large engine to generate electricity and heat.



500 kW_{el} biogas engine

92% of use

Part is used in burners only


Status and potential in Europe

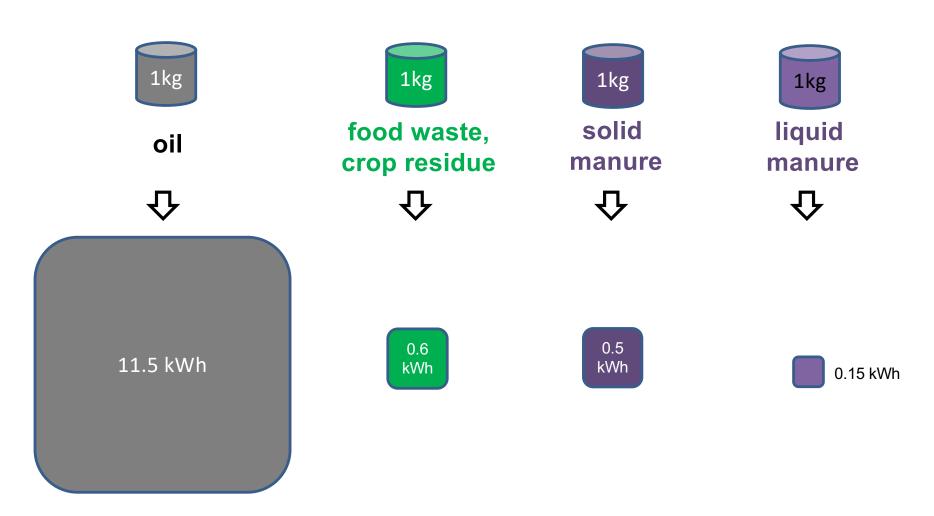
Use: mainly large installations >200m³/h (>1 MW_{CH4})

The unused potential lies in small scale installations of <20 m³/h

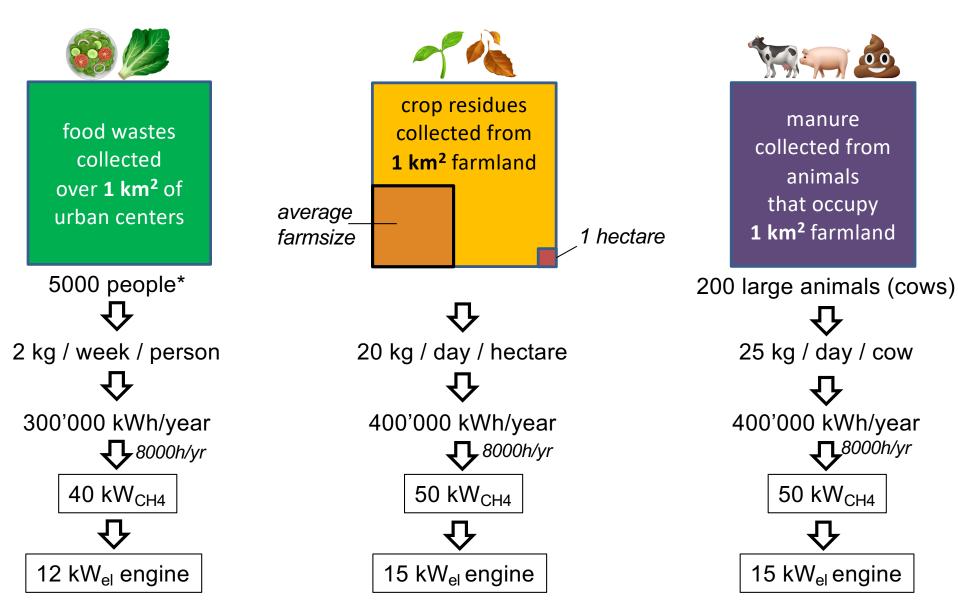
Status and potential in Switzerland

The issues

- The current use technologies of biomethane injection and CHP engines impose a scale of biogas production in large digesters to generate biogas flows of 100-1000 m³/h (0.6-6MW_{CH4}), because at lower scale:
 - CH₄/CO₂ separation becomes expensive
 - Engines (and turbines) are electrically inefficient:
 - at 500 kWe, a biogas engine reaches up to 40% electrical efficiency*
 - at <50kWe, a biogas engine does not reach 30% electrical efficiency


=> as a consequence, small-scale biogas generation remains unused, whereas this represents the majority of the resource

• Biogas engines **pollute** (they generate NO, CO, SO₂), are noisy, and expensive in maintenance (need regular replacement of parts). In fact small engines are replaced almost yearly.


^{*}presently, average biogas engine efficiency is 38% in Europe and 34% in Switzerland

The issue of scale (1)

Biowastes are a <u>dilute</u> energy source

The issue of scale (2)

^{*5000} people/km² is a dense city (Lausanne: 3400 hab / km²)

____8000h/yr

Transporting biowaste fuel

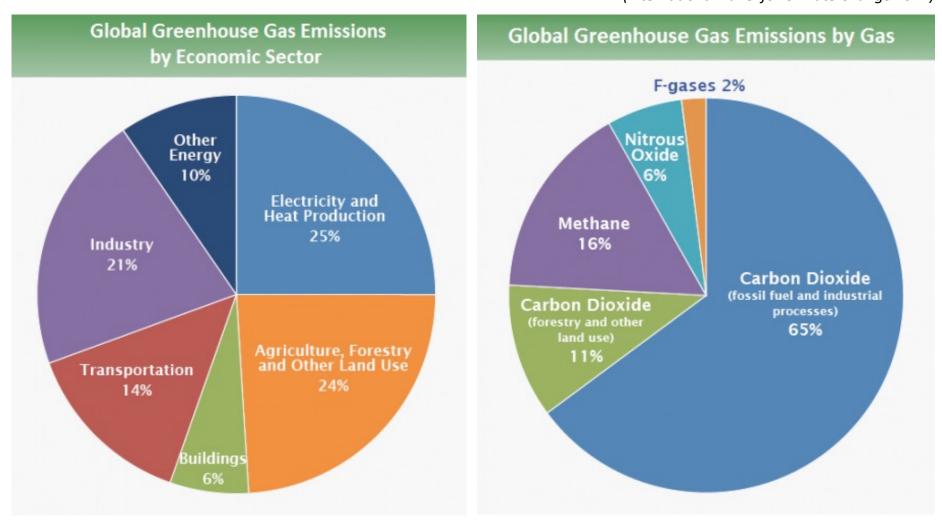
- A tractor consumes 50L diesel/100km = 500 kWh/100km
- 1 ton biowaste contains
 - 500 kWh for solids (crop residues, solid manure)
 - 150 kWh for liquid manure
- => it is not very sensical to transport a few tonnes of biowaste over more than 5-10km.

Summarised:

- Biowaste better be used <u>locally</u>, over a few km²
- The available energy is then a few 100kW_{CH4}, in biogas flows of 10-50 m³/h*

This requires:

- 1. cost-effective small-scale AD (digesters)
- 2. a valorisation technology that is more efficient and cleaner than engines, on small-scale
- ⇒Solid Oxide Fuel Cells : >50% electrical efficiency no pollution (№0, 🕫0, 🕫0₂)


^{*1.6} m³/h biogas (60%CH₄-40%CO₂) = 1 m³/h CH₄ = 10 kWh_CH₄ = 3 kWe in a 30% efficient engine

Special case of landfill gas (LFG)

- (multi)MW_{el}-size sites (with gas engines, gas turbines)
- an important fraction of world biogas (20 Mtoe)
- 3 Mtoe in EU-27
- important anthropogenic GHG emitter! (as CH₄)
- often heavily contaminated (with F, Cl, NH₃, H₂S, Si,...)
- often of low calorific value (diluted with N₂/O₂)
 - engines stop running <45% CH₄
 - fuel-assisted flaring or venting!

Global GHG

Source: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (International Panel for Climate Change 2014)

Impact of agriculture, animal breeding and deforestation on climate change tends to be underestimated