Solutions Homework 8
 CS-526 Learning Theory

Problem 1: Kronecker and Khatri-Rao products

1) To show that $A \odot_{\text {KhR }} B$ is full column rank, we have to prove that the kernel of the linear application $\underline{x} \mapsto\left(A \odot_{\mathrm{KhR}} B\right) \underline{x}$ is $\{0\}$. Let $\underline{x} \in \mathbb{R}^{R}$ with components $\left(x^{1}, x^{2}, \cdots, x^{R}\right)$ be such that $\left(A \odot_{K h R} B\right) \underline{x}=0$. Then, $\forall \alpha \in\left[I_{1}\right]:$

$$
\sum_{r=1}^{R} a_{r}^{\alpha} x^{r} \underline{b}_{r}=0
$$

Because B is full column rank, $\sum_{r=1}^{R} a_{r}^{\alpha} x^{r} \underline{b}_{r}=0 \Rightarrow \forall r \in[R]: a_{r}^{\alpha} x^{r}=0$. Hence, $\forall r \in[R]: x_{r} \underline{a}_{r}=0$. A is full column rank so none of its columns can be the all-zero vector. It follows that x_{r} must be zero for all $r \in[R]$, i.e., $\underline{x}=0 . A \odot_{K h R} B$ is full column rank.
2) Suppose we are given a tensor (the weights λ_{r} that usually appear in the sum are absorbed in the vectors \underline{a}_{r})

$$
\begin{equation*}
\mathcal{X}=\sum_{r=1}^{R} \underline{a}_{r} \otimes \underline{b}_{r} \otimes \underline{c}_{r} \tag{1}
\end{equation*}
$$

where $A=\left[\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{R}\right] \in \mathbb{R}^{I_{1} \times R}, B=\left[\underline{b}_{1}, \underline{b}_{2}, \ldots, \underline{b}_{R}\right] \in \mathbb{R}^{I_{2} \times R}$ and $C=\left[\underline{c}_{1}, \underline{c}_{2}, \ldots, \underline{c}_{R}\right] \in \mathbb{R}^{I_{3} \times R}$ are full column rank. By Jennrich's algorithm, the decomposition (1) is unique up to trivial rank permutation and feature scaling and Jennrich's algorithm is a way to recover this decomposition. At the end of the step (5) of the algorithm, we have computed A, B and it remains to recover C. We now show how the result in question 1) allows to recover C uniquely. For each $\gamma \in\left[I_{3}\right]$, define the slice \mathcal{X}_{γ} as the $I_{1} \times I_{2}$ matrix with entries $\left(\mathcal{X}_{\gamma}\right)^{\alpha \beta}=\mathcal{X}^{\alpha \beta \gamma}$ and denote $F\left(\mathcal{X}_{\gamma}\right)$ the $I_{1} I_{2}$ column vector with entries $F\left(\mathcal{X}_{\gamma}\right)^{\beta+I_{2}(\alpha-1)}=\mathcal{X}^{\alpha \beta \gamma}$. We have:

$$
\forall(\alpha, \beta) \in\left[I_{1}\right] \times\left[I_{2}\right]: F\left(\mathcal{X}_{\gamma}\right)^{\beta+I_{2}(\alpha-1)}=\sum_{r=1}^{R} a_{r}^{\alpha} b_{r}^{\beta} c_{r}^{\gamma}=\sum_{r=1}^{R}\left(A \odot_{\mathrm{KhR}} B\right)^{\beta+I_{2}(\alpha-1), r} c_{r}^{\gamma}
$$

Therefore, the $I_{1} I_{2} \times I_{3}$ matrix $F(\mathcal{X})=\left[F\left(\mathcal{X}_{1}\right), F\left(\mathcal{X}_{2}\right), \ldots, F\left(\mathcal{X}_{I_{3}}\right)\right]$ satisfies:

$$
F(\mathcal{X})=\left(A \odot_{\mathrm{KhR}} B\right) C^{T}
$$

Because $A \odot_{\mathrm{KhR}} B$ is full column rank, we can invert the system with the Moore-Penrose pseudoinverse: $C^{T}=\left(A \odot_{\mathrm{KhR}} B\right)^{\dagger} F(\mathcal{X})$.

Problem 2: Jennrich's type algorithm for order 4 tensors

1) To apply Jennrich's algorithm we need to prove that the matrix $E=\left[\underline{c}_{1} \otimes_{\mathrm{Kro}} \underline{d}_{1}, \ldots, \underline{c}_{R} \otimes_{\mathrm{Kro}} \underline{d}_{R}\right]$ is full column rank $(A, B$ are full column rank by assumption). Note that the same proof as the
one in Problem 4 question 1 applies. Nevertheless we repeat the argument here.
Let $\underline{v} \in \mathbb{R}^{R}$ a column vector in the kernel of E, i.e., $E \underline{v}=0$. Then:

$$
\forall \gamma \in\left[I_{3}\right]: \sum_{r=1}^{R}\left(c_{r}^{\gamma} v^{r}\right) \underline{d}_{r}=0 \Rightarrow \forall \gamma \in\left[I_{3}\right], \forall r \in[R]: c_{r}^{\gamma} v^{r}=0 \Rightarrow C \underline{v}=0 \Rightarrow \underline{v}=0
$$

The first implication follows from D being full column rank and the third one from C being full column rank. We conclude that the kernel of E is $\{0\}$: E is full column rank.
We can therefore apply Jennrich's algorithm.
2) We recover the rank R as well as A, B and E by applying Jennrich's algorithm to \widetilde{T}. From E we can then determine C and D. Fix $r \in[R]$. Since C is full column rank, there exists $\alpha_{r} \in\left[I_{3}\right]$ such that $c_{r}^{\alpha_{r}} \neq 0$. As $c_{r}^{\alpha_{r}} \neq 0$, the I_{4}-dimensional column vector $\underline{\tilde{d}}_{r}=c_{r}^{\alpha} \underline{d}_{r}$ contained in the $r^{\text {th }}$ column of E recovers \underline{d}_{r} up to some feature scaling. Doing this for every $r \in[R]$ we build the matrix $\widetilde{D}=\left[\begin{array}{llll}\tilde{\underline{d}}_{1} & \tilde{d}_{2} & \cdots & \tilde{\tilde{d}}_{R}\end{array}\right]$ that recovers D up to some feature scaling and is full column rank (because D is). Finally, for every $r \in R$, pick $\beta_{r} \in\left[I_{4}\right]$ such that $\tilde{d}_{r}^{\beta_{r}} \neq 0$ (such β_{r} exists because \widetilde{D} is full column rank) and use the entries of E corresponding to $c_{r}^{\alpha} d_{r}^{\beta_{r}}, \alpha \in\left[I_{3}\right]$, to build the vector $\widetilde{\underline{c}}_{r}=\frac{d_{r}^{\beta r}}{\tilde{d}_{r}^{\beta r}} \underline{c}_{r}$. The matrix $\widetilde{C}=\left[\begin{array}{llll}\tilde{\underline{c}}_{1} & \tilde{\underline{c}}_{2} & \cdots & \tilde{\underline{c}}_{R}\end{array}\right]$ recovers C up to some feature scaling.

