Homework 8

CS-526 Learning Theory

Note: The tensor product is denoted by \otimes. In other words, for vectors $\underline{a}, \underline{b}, \underline{c}$ we have that $\underline{a} \otimes \underline{b}$ is the square array $a^{\alpha} b^{\beta}$ where the superscript denotes the components, and $\underline{a} \otimes \underline{b} \otimes c$ is the cubic array $a^{\alpha} b^{\beta} c^{\gamma}$. We often denote components by superscripts because we need the lower index to label vectors themselves.

Problem 1: Kronecker and Khatri-Rao products

The Kronecker product $\otimes_{\text {Kro }}$ of two vectors $\underline{a} \in \mathbb{R}^{I_{1}}$ and $\underline{b} \in \mathbb{R}^{I_{2}}$ is a vectorization of the tensor (or outer) product. This amounts to take the $I_{1} \times I_{2}$ array $a^{\alpha} b^{\beta}=(\underline{a} \otimes \underline{b})^{\alpha \beta}$ and view it as a vector of size $I_{1} I_{2}$. More precisely, we define the Kronecker product as the column vector:

$$
\underline{a} \otimes_{\mathrm{Kro}} \underline{b}=\left[\begin{array}{lll}
a^{1} \underline{b}^{T} & \cdots & a^{I_{1}} \underline{b}^{T}
\end{array}\right]^{T} \in \mathbb{R}^{I_{1} I_{2}} .
$$

Let $A=\left[\begin{array}{lll}\underline{a}_{1} & \cdots & \underline{a}_{R}\end{array}\right]$ and $B=\left[\begin{array}{lll}\underline{b}_{1} & \cdots & \underline{b}_{R}\end{array}\right]$ be matrices of dimensions $I_{1} \times R$ and $I_{2} \times R$. We define the Khatri-Rao product as the $I_{1} I_{2} \times R$ matrix

$$
A \odot_{\mathrm{KhR}} B=\left[\begin{array}{lll}
\underline{a}_{1} \otimes_{\mathrm{Kro}} \underline{b}_{1} & \cdots & \underline{a}_{R} \otimes_{\mathrm{Kro}} \underline{b}_{R}
\end{array}\right] .
$$

1) Assume that both A and B are full column rank. Prove that the Khatri-Rao product $A \odot_{\mathrm{KhR}} B$ is also full column rank.
2) Explain in detail in which step of Jennrich's algorithm this fact is used (see Figure 1).

Problem 2: Jennrich's type algorithm for order 4 tensors

Consider an order four tensor

$$
T=\sum_{r=1}^{R} \underline{a}_{r} \otimes \underline{b}_{r} \otimes \underline{c}_{r} \otimes \underline{d}_{r}
$$

where $A=\left[\begin{array}{lll}\underline{a}_{1} & \cdots & \underline{a}_{R}\end{array}\right] \in \mathbb{R}^{I_{1} \times R}, B=\left[\begin{array}{lll}\underline{b}_{1} & \cdots & \underline{b}_{R}\end{array}\right] \in \mathbb{R}^{I_{2} \times R}, C=\left[\begin{array}{lll}\underline{c}_{1} & \cdots & \underline{c}_{R}\end{array}\right] \in \mathbb{R}^{I_{3} \times R}$ and $D=\left[\begin{array}{lll}\underline{d}_{1} & \cdots & \underline{d}_{R}\end{array}\right] \in \mathbb{R}^{I_{4} \times R}$ are full column rank.

1) Check that you can apply Jennrich's algorithm to a "flattened" version of T, namely the order three tensor

$$
\widetilde{T}=\sum_{r=1}^{R} \underline{a}_{r} \otimes \underline{b}_{r} \otimes\left(\underline{c}_{r} \otimes_{\mathrm{Kro}} \underline{d}_{r}\right) .
$$

where \otimes_{Kro} is the Kronecker product defined in the previous question.
2) Deduce that the rank R as well as the matrices A, B, C, D can be uniquely determined from the four-dimensional array of numbers $T^{\alpha \beta \gamma \delta}$ (up to trivial rank permutation and feature scaling).
4.1.1 Jennrich's Algorithm. If A, B, and C are all linearly independent (i.e. have full rank), then $\mathcal{X}=\sum_{r=1}^{R} \lambda_{r} \boldsymbol{a}_{r} \odot \boldsymbol{b}_{r} \odot \boldsymbol{c}_{r}$ is unique up to trivial rank permutation and feature scaling and we can use Jennrich's algorithm to recover the factor matrices [23, 24]. The algorithm works as follows:
(1) Choose random vectors \boldsymbol{x} and \boldsymbol{y}.
(2) Take a slice through the tensor by hitting the tensor with the random vector \boldsymbol{x} :

$$
\mathcal{X}(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{x})=\sum_{r=1}^{R}\left\langle\boldsymbol{c}_{r}, \boldsymbol{x}\right\rangle \boldsymbol{a}_{r} \odot \boldsymbol{b}_{r}=A \operatorname{Diag}\left(\left\langle\boldsymbol{c}_{r}, \boldsymbol{x}\right\rangle\right) B^{T} .
$$

(3) Take a second slice through the tensor by hitting the tensor with the random vector \boldsymbol{y} :
$\mathcal{X}(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{y})=\sum_{r=1}^{R}\left\langle\boldsymbol{c}_{r}, \boldsymbol{y}\right\rangle \boldsymbol{a}_{r} \odot \boldsymbol{b}_{r}=A \operatorname{Diag}\left(\left\langle\boldsymbol{c}_{r}, \boldsymbol{y}\right\rangle\right) B^{T}$.
(4) Compute eigendecomposition to find A :
$\mathcal{X}(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{x}) \mathcal{X}(\boldsymbol{I}, \boldsymbol{I}, \boldsymbol{y})^{\dagger}=A \operatorname{Diag}\left(\left\langle c_{r}, \boldsymbol{x}\right\rangle\right) \operatorname{Diag}\left(\left\langle\boldsymbol{c}_{r}, \boldsymbol{y}\right\rangle\right)^{\dagger} \boldsymbol{A}^{\dagger}$
(5) Compute eigendecomposition to find B :
$X(I, I, x)^{\dagger} X(I, I, y)=\left(B^{T}\right)^{\dagger} \operatorname{Diag}\left(\left\langle c_{r}, \boldsymbol{x}\right\rangle\right)^{\dagger} \operatorname{Diag}\left(\left\langle c_{r}, \boldsymbol{y}\right\rangle\right) B^{T}$
(6) Pair up the factors and solve a linear system to find C.

Figure 1: Jennrich's algorithm (from Introduction to Tensor Decompositions and their Applications in Machine Learning Review,Rabanser, Shchur, Gunnemann)

