World fossil energy consumption entirely replaced by biomass as renewable source ?

Data

World primary energy consumption:

- 4059 Mton oil, of equivalent chemical formula $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{0.1} \mathrm{O}_{0.1} \mathrm{~S}_{0.3}$
(=> molar weight $=110 \mathrm{~g} / \mathrm{mol}$), $\rho=0.88 \mathrm{~kg} / \mathrm{L}$
- $3223 \mathrm{Gm}^{3}$ natural gas ($=2905.6 \mathrm{Mtoe}$), $\rho=0.7 \mathrm{~kg} / \mathrm{m}^{3}$,
\rightarrow take as equivalent to methane CH_{4} (=> molar weight $\left.=16 \mathrm{~g} / \mathrm{mol}\right)$
- 7.5 Gton coal ($=3724 \mathrm{Mtoe}$), heating value $20 \mathrm{MJ} / \mathrm{kg}$, carbon content 0.5 carbon $/ \mathrm{kg}$ coal (molar weight of carbon $=12 \mathrm{~g} / \mathrm{mol}$)

Replacement

1.

We need 2 * 3724 Mtoe energy equivalent in wood to replace coal (to account for only half the electrical conversion efficiency, 20% instead of 40%) $=7450$ Mtoe wood equivalent $=312$ $\mathrm{EJ}=18.35 \mathrm{Gt}$ wood of $17 \mathrm{MJ} / \mathrm{kg}$ heating value. Compared with the yearly wood energy production in forests (32 Gtoe), we would require $1 / 4^{\text {th }}(7.45 \mathrm{Gtoe}$) of this amount, showing the scale needed to replace coal by wood.

If we can grow 2 kg per m^{2} in renewable fashion, these $18.3510^{12} \mathrm{~kg}$ grow on $9.18 \mathbf{1 0}^{12} \mathbf{~ m}^{2}$ woodland. To harvest this sustainably, if we assume a 25 year growth cycle, we then use every year $1 / 25^{\text {th }}$ of the area, i.e. $3.6710^{11} \mathrm{~m}^{2}$ woodland.

The globe surface is $4 . \pi .\left(6^{\prime} 378^{\prime} 000 \mathrm{~m}\right)^{2}=5.110^{14} \mathrm{~m}^{2}$, of which 11% is forest land, i.e. 5.6 $10^{13} \mathrm{~m}^{2}$. Hence $0.66 \%\left(=3.6710^{11} \mathrm{~m}^{2}\right.$ of $\left.5.610^{13} \mathrm{~m}^{2}\right)$ of total forest area on Earth would be needed every year to replace coal for electricity, and then allowed to grow back.
2.

We need 4059 Mtoe ethanol equivalent ($21 \mathrm{MJ} / \mathrm{L}$).
4059 Mtoe $=170 \mathrm{EJ}$, which is $8.110^{12} \mathrm{~L}$ (with $21 \mathrm{MJ} / \mathrm{L}$ heating value for ethanol).
This requires 2.710^{9} hectare cropland (if ethanol yield is $3000 \mathrm{~L} /$ hectare), i.e. $2.710^{13} \mathrm{~m}^{2}$ of agricultural land. Total current agricultural land is 3% of the globe, or $1.5310^{13} \mathrm{~m}^{2}$.
In other words, we would almost need to double the now used agricultural land only to replace oil by ethanol!

3.

We need $3223 \mathrm{Gm}^{3}$ gas $=3.22310^{12} \mathrm{~m}^{3}$ and can generate this from agrowaste at a rate of $2000 \mathrm{~m}^{3}$ methane per year and hectare of agricultural land. Hence we need 1.6110^{9} hectare, or $1.61 \mathbf{1 0}^{13} \mathrm{~m}^{2}$. Again this alone would use all the current agricultural land!

In total we would need $4.3110^{13} \mathrm{~m}^{2}$ agricultural land (=8.5\% of the planet, i.e. 30% of all land!) and $3.6710^{11} \mathrm{~m}^{2}$ woodland. Clearly liquid and gaseous biofuels are limited. This is less so with solid biomass, due to its bigger energy density and growth density.
In fact, the main bottleneck in energy supply today is liquid fuel for mobility and the world's high dependence on oil for it as its almost exclusive source.

