Série 30

Exercice 1. Normalisation d'un vecteur. Soit \vec{u} un vecteur non-nul de V_n . Montre que le vecteur $\frac{1}{\|\vec{u}\|} \cdot \vec{u}$ est un vecteur *unitaire* (c'est-à-dire de norme égale à 1) de même sens et même direction que \vec{u} . Ce vecteur unitaire est la *normalisation de* \vec{u} .

Normalise les vecteurs $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ de V_2 et $\begin{pmatrix} 2 \\ 6 \\ 9 \end{pmatrix}$ de V_3 .

Exercice 2. Les polynômes comme espace vectoriel. Nous travaillons dans $\mathbb{R}[x]$, le \mathbb{R} -espace vectoriel des polynômes en une indéterminée x. Considérons l'ensemble P_2 des polynômes de degré ≤ 2 .

- a) Montre que P_2 est un espace vectoriel.
- b) Montre que le triplet de polynômes $(1; x; x^2)$ forme une base de P_2 .
- c) Montre que le triplet de polynômes (1-x;1+x;x) ne forme pas une base de P_2 .
- d) Montre que le triplet de polynômes $(1+x;1+x+x^2;1)$ forme une base de P_2 .

Exercice 3. Reporte dans \mathbb{R}^2 , muni du repère usuel (considère une grille graduée horizontalement de -6 à 13 et verticalement de -3 à 11), les points A=(3;-1), B=(-3;0), C=(10;10), D=(-5;5), E=(7;0). Soit maintenant la base $\mathcal{B}=(\overrightarrow{v};\overrightarrow{w})$ de V_2 formée des vecteurs $\overrightarrow{v}=\begin{pmatrix}1\\1\end{pmatrix}$ et $\overrightarrow{w}=\begin{pmatrix}-1\\1\end{pmatrix}$.

- a) Démontre qu'il s'agit bien d'une base.
- b) Calcule algébriquement les composantes dans \mathcal{B} des vecteurs \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} , \overrightarrow{OD} et \overrightarrow{OE} .
- c) Trouve géométriquement (en effectuant une construction à la règle sur la grille) les mêmes composantes. Explique la construction que tu effectues.

Exercice 4. On considère les points A = (5; 2), B = (6; -3), C = (7; 8), D = (3; 8), E = (5; -6) et F = (-1; 36). Détermine si les points A, B et C sont alignés et explique ton raisonnement. Fais de même pour les points D, E et F.

Exercice 5. On considère les points A = (3; 4; 5), B = (9; -18; -15) et P = (12; -14; -10). Détermine si ces trois points sont alignés et, si c'est le cas, calcule le rapport de section (AB, P).

Exercice 6. On considère les points A = (-2, -1), B = (7, 0) et C = (1, 5). Calcule les coordonnées du quatrième sommet du parallélogramme ABCD.