Quantum computation: lecture 10 (Ruediger)
Shor's algorithm: summary
Task: given N, nou-prime, find a non-trivial factor of N
We assume: 2 does not divide N

$$
N \neq p^{e} \text {, prime }
$$

(as these cases are easily solvable)

Algorithm: Pick $a \in\{2 \ldots N-1\}$ un f. at random

- Compute $\operatorname{gcd}(a, N)=d$ with Euclid's algo
- If $d \neq 1$, we have faind a nan-mivial factor of N
- If $d=1$, compute the multiplicative order of $a^{x} \bmod N$, call it $r(N B: r$ is the smallest value sit. $\left.a^{r} \bmod N=1\right) \rightarrow$ Sher
- If r is odd, then declare failure
- If r is even, write $a^{r}-1=\left(a^{r / 2}-1\right) \cdot\left(a^{1 / 2}+1\right)$
- If N divides $a^{\frac{r}{2}}+1$, then declare failure
- otherwise, compute $\operatorname{gcd}\left(N, a^{\frac{5}{2}}-1\right)$ and $\operatorname{gcd}\left(N, a^{\frac{\Gamma}{2}}+1\right)$: both must be non-mvid: done
Analysis $\rightarrow \mathbb{P}($ failure $) \leq \frac{1}{4}\binom{$ repeat the algol }{ in this case }

Take now $M=2^{m} \sim N^{2}(r<N)$.
We wish to compute the period of $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined as $f_{a, N}(x)=a^{x} \bmod N$ f is r-periodic: $f(x+r)=f(x) \quad \forall x \in \mathbb{Z}$ Look at f on $\{0 . . M-1\}$

Consider now the following quantum circuit.

$$
\begin{aligned}
& \left|\psi_{0}\right\rangle=|0 . .0\rangle \otimes|0.0\rangle \\
& \left|\psi_{1}\right\rangle=\frac{1}{\sqrt{M}} \sum_{x=0}^{M \cdot 1}|x\rangle \otimes|0 . .0\rangle \\
& \left.\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{M}} \sum_{x=0}^{m-1}|x\rangle \otimes \right\rvert\, f(x)> \\
& {\left[\begin{array}{l}
\text { Assume } \\
r \text { dnides } M
\end{array}\right]=\frac{1}{\sqrt{M}} \sum_{x_{0}=0}^{r=0} \sum_{j=0}^{M-1}\left|x_{0}+j r\right\rangle \otimes \underbrace{\left|f\left(x_{0}+j r\right)\right\rangle}_{=f\left(x_{0}\right)}} \\
& \left|\psi_{3}\right\rangle=\frac{1}{\pi} \sum_{x_{0}=0}^{n-1} \sum_{y=0}^{m-1} e^{\frac{2 \pi i x_{0} y}{\pi}} \sum_{j=0}^{\Gamma-1} e^{\frac{2 \pi i j y}{\pi} i r}|y\rangle \otimes\left|f\left(x_{0}\right)\right\rangle
\end{aligned}
$$

Measurement: $P_{y}=|y\rangle\langle y| \otimes I_{m}$
Outcome:
If r dines M, then $P(y)=\frac{1}{M^{2}} \sum_{x_{0}=0}^{n-1}\left|\sum_{j=0}^{\frac{n}{-1}} e^{\frac{2 \pi i j y}{M i r}}\right|^{2}$
So $y=k \cdot \frac{M}{r}$ with $k \in\{0 . . r-1\}$ uniformly dist.
Now, if r does not divide M, the formula becomes:

$$
P(y)=\left.\frac{1}{\Gamma^{2}} \sum_{x_{0}=0}^{r-1} \sum_{j=0}^{A\left(x_{0}\right)-1} e^{\frac{2 \pi i j y}{\pi / r}}\right|^{2} \text { where } A\left(x_{0}\right)=\left\{\begin{array}{l}
\text { either } \left.\Gamma \frac{\pi}{r}\right] \\
\operatorname{rr}\left[\frac{\pi}{r}-1\right\rceil
\end{array}\right.
$$

In this second case, it can be shown that

$$
\mathbb{P}\left(\exists 0 \leq k \leq r \cdot 1 \text { sr. }|y-k \cdot M| \leq \frac{1}{2}\right) \geqslant \frac{2}{5}
$$

ie. $\left|\frac{y}{\pi}-\frac{k}{r}\right| \leq \frac{1}{2 M} \leq \frac{1}{2 r^{2}}$ in case of success.
Assume now $\operatorname{gcd}(k, r)=1$ (this happens with probability $\left.\geq \frac{1}{4 \ln \ln r}\right)$.

Systematic way to find r :
Compute all convergents of $\frac{y}{H}$ (continued frachiox)
\Rightarrow look at all the denominators:
each of these denominators is a candidate for the period r : check if $a^{r} \bmod N=1$

