Exercise Set 13: Solution
 Quantum Computation

Exercise 1 The Steane code

(a) The columns of the parity check matrix of the Hamming $(7,4)$ code are given by all binary non-zero vectors with $r=3$ components (so that $2^{r}-1=7$):

$$
H_{1}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

The generator matrix of $C_{2}=C_{1}^{\perp}$ is given by vectors perpendicular to C_{1}. Since a vector $c \in C_{1}$ satisfies $H_{1} c^{T}=0$, the rows of H_{1} are 3 vectors \perp to C_{1}. Note that C_{1} has dimension 4, so $C_{1}^{\perp}=\left\{x \in\{0,1\}^{7}: x \cdot c=0, \forall c \in C_{1}\right\}$ has dimension $7-4=3$ and $G_{2}=H_{1}$ is therefore the generator matrix of C_{2}.

Codewords of C_{2} are given by

$$
\left(u_{1}, u_{2}, u_{3}\right) \cdot G_{2}=\left(u_{3}, u_{2}, u_{2} \oplus u_{3}, u_{1}, u_{1} \oplus u_{3}, u_{1} \oplus u_{2}, u_{1} \oplus u_{2} \oplus u_{3}\right)
$$

with $\left(u_{1}, u_{2}, u_{3}\right) \in\{0,1\}^{3}$. The list of codewords of C_{2} is therefore

$$
\begin{equation*}
0000000,1010101,0110011,0001111,0111100,1011010,1100110,1101001 \tag{1}
\end{equation*}
$$

To show that $C_{2} \subset C_{1}$, it suffices to check that

$$
H_{1} \cdot\left(u G_{2}\right)^{T}=0 \quad \forall u \in\{0,1\}^{3}
$$

which is satisfied if $H_{1} \cdot G_{2}^{T}=H_{1} \cdot H_{1}^{T}=0$. This is indeed the case, as each row of H_{1} has an even number of 1 's.

Finally, C_{1} corrects 1 error, because all pairs of columns of H_{1} are independent and its third column is a linear combination of the first two, and therefore the minimal distance (between codewords) is $d=3$ (and $t=1$).

Moreover, $C_{2}^{\perp}=\left(C_{1}^{\perp}\right)^{\perp}=C_{1}$ corrects also 1 error.
(b) The $\operatorname{CSS}\left(C_{2}, C_{1}\right)$ code possesses parameters: $n=7$ (length) $\operatorname{dim} \mathcal{H}=2^{7}$ (\mathcal{H} sbspace of Hilbert space of the 7 qubits).
$k_{1}-k_{2}=\operatorname{dim}\left(C_{1}\right)-\operatorname{dim}\left(C_{2}\right)=4-3=1$. The code $\operatorname{CSS}\left(C_{2}, C_{1}\right)$ is a subspace of \mathcal{H} of dimension $2^{1}=2$. The code corrects $t=1$ error.

(c) Codewords:

The equivalence class (or coset) of $c_{0}=(0,0,0,0,0,0,0) \in C_{1}$ is:

$$
\begin{aligned}
|0\rangle_{\text {Steane }}= & \frac{1}{\sqrt{\left|C_{2}\right|}} \sum_{y \in C_{2}}|y\rangle \\
= & \frac{1}{\sqrt{8}}\{|0000000\rangle+|1010101\rangle+|0110011\rangle+|0001111\rangle+ \\
& \quad+|0111100\rangle+|1011010\rangle+|1100110\rangle+|1101001\rangle\} .
\end{aligned}
$$

where we used the list of 8 (classical) codewords of C_{2} given in (1).

Besides, $c_{1}=(1,1,1,1,1,1,1)$ is a codeword in C_{1} which is not in C_{2} (check!). Its equivalence class gives the other independent vector of Steane's code:

$$
\begin{aligned}
|1\rangle_{\text {Steane }}= & \frac{1}{\sqrt{\left|C_{2}\right|}} \sum_{y \in c_{1} \oplus C_{2}}|y\rangle \\
= & \frac{1}{\sqrt{8}}\{|1111111\rangle+|0101010\rangle+|1001100\rangle+|1110000\rangle+ \\
& \quad+|100011\rangle+|0100101\rangle+|0011001\rangle+|0010110\rangle\} .
\end{aligned}
$$

A general codeword is a linear combination (by the superposition principle of quantum mechanics)

$$
|\psi\rangle=\alpha|0\rangle_{\text {Steane }}+\beta|1\rangle_{\text {Steane }}
$$

with $|\alpha|^{2}+|\beta|^{2}=1 ; \alpha, \beta \in \mathbb{C}$. This code needs 7 qubits to correct an error (bit, phase, or bit-phase flip) on $t=1$ qubit.

