Exercise 1 QM reminder and 3-qubit repetition code
(a) Let us start with Z, which is the simplest: its two eigenvectors are $|0\rangle$ and $|1\rangle$, with respective eigenvalues +1 and -1 . For X, observe that

$$
X(|0\rangle+|1\rangle)=|1\rangle+|0\rangle \quad \text { and } \quad X(|0\rangle-|1\rangle)=|1\rangle-|0\rangle
$$

so the two (normalized) eigenvectors of X are $|+\rangle=\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $|-\rangle=\frac{|0\rangle-|1\rangle}{\sqrt{2}}$, again with respective eigenvalues +1 and -1 .
(b) Let us compute

$$
[X, Z]=X Z-Z X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 \\
2 & 0
\end{array}\right)
$$

and

$$
\{X, Z\}=X Z+Z X=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

so $X Z=-Z X$.
(c) If $i=j$, then clearly $\left[Z_{i}, Z_{i}\right]=0$ and if $i \neq j$, then for example in the case $i=1$ and $j=2$, for any x_{1}, x_{2}, x_{3}, we obtain

$$
\begin{aligned}
{\left[Z_{1}, Z_{2}\right]\left|x_{1}, x_{2}, x_{3}\right\rangle } & =\left(Z_{1} Z_{2}-Z_{2} Z_{1}\right)\left|x_{1}, x_{2}, x_{3}\right\rangle \\
& =(-1)^{x_{1}+x_{2}}\left|x_{1}, x_{2}, x_{3}\right\rangle-(-1)^{x_{1}+x_{2}}\left|x_{1}, x_{2}, x_{3}\right\rangle=0
\end{aligned}
$$

so $\left[Z_{i}, Z_{j}\right]=0$ for all i, j. For the commutators between the X's and the Z's, we obtain for $i=j(=1$, for example):

$$
\begin{aligned}
{\left[X_{1}, Z_{1}\right]\left|x_{1}, x_{2}, x_{3}\right\rangle } & =\left(X_{1} Z_{1}-Z_{1} X_{1}\right)\left|x_{1}, x_{2}, x_{3}\right\rangle \\
& =(-1)^{x_{1}}\left|\bar{x}_{1}, x_{2}, x_{3}\right\rangle-(-1)^{\bar{x}_{1}}\left|\bar{x}_{1}, x_{2}, x_{3}\right\rangle=2(-1)^{x_{1}}\left|\bar{x}_{1}, x_{2}, x_{3}\right\rangle
\end{aligned}
$$

If $i \neq j$ ($i=1$ and $j=2$ for example), then we obtain

$$
\begin{aligned}
{\left[X_{1}, Z_{2}\right]\left|x_{1}, x_{2}, x_{3}\right\rangle } & =\left(X_{1} Z_{2}-Z_{2} X_{1}\right)\left|x_{1}, x_{2}, x_{3}\right\rangle \\
& =(-1)^{x_{2}}\left|\bar{x}_{1}, x_{2}, x_{3}\right\rangle-(-1)^{x_{2}}\left|\bar{x}_{1}, x_{2}, x_{3}\right\rangle=0
\end{aligned}
$$

so $\left[X_{i}, Z_{j}\right]=0$ for all $i \neq j$.
(d) The order does not matter here, as the operators A_{1} and A_{2} commute. Besides, $\left|\psi_{1}\right\rangle$ is an eigenvector of both A_{1} and A_{2} in any case.
(e) If there is no bit flip (i.e., $\left|\psi_{1}\right\rangle=\left|\psi_{0}\right\rangle$), then $A_{1}\left|\psi_{1}\right\rangle=(+1)\left|\psi_{1}\right\rangle$ and $A_{2}\left|\psi_{1}\right\rangle=(+1)\left|\psi_{1}\right\rangle$, in which case no X operation is needed.

If the first bit is flipped (i.e., $\left|\psi_{1}\right\rangle=\alpha|100\rangle+\beta|011\rangle$), then $A_{1}\left|\psi_{1}\right\rangle=(+1)\left|\psi_{1}\right\rangle$ and $A_{2}\left|\psi_{1}\right\rangle=(-1)\left|\psi_{1}\right\rangle$; in this case, the observable X_{1} must then be measured.

If the second bit is flipped (i.e., $\left|\psi_{1}\right\rangle=\alpha|010\rangle+\beta|101\rangle$), then $A_{1}\left|\psi_{1}\right\rangle=(-1)\left|\psi_{1}\right\rangle$ and $A_{2}\left|\psi_{1}\right\rangle=(+1)\left|\psi_{1}\right\rangle$; in this case, the observable X_{2} must then be measured.

If the third bit is flipped (i.e., $\left|\psi_{1}\right\rangle=\alpha|001\rangle+\beta|110\rangle$), then $A_{1}\left|\psi_{1}\right\rangle=(-1)\left|\psi_{1}\right\rangle$ and $A_{2}\left|\psi_{1}\right\rangle=(-1)\left|\psi_{1}\right\rangle$; in this case, the observable X_{3} must then be measured.
(f) This is not a problem, as the (potential) measurement of X_{i} comes clearly after the measurements of A_{1} and A_{2}. But note that $\left|\psi_{1}\right\rangle$ is not an eigenvector of X_{i}.
(g) No, as the measurements of A_{1} and A_{2} suffice to determine the position of the bit-flip; an additional measurement of A_{3} would therefore be useless (but not detrimental).

Exercise 2 The Shor code
Let us compute the states after the successive stages:
$\left|\psi_{0}\right\rangle=|\psi\rangle \otimes|0\rangle^{\otimes 8}$
$\left|\psi_{1}\right\rangle=|\psi\rangle \otimes|0\rangle^{\otimes 2} \otimes|\psi\rangle \otimes|0\rangle^{\otimes 2} \otimes|\psi\rangle \otimes|0\rangle^{\otimes 2}$
$\left|\psi_{2}\right\rangle=\left(\frac{(-1)^{\psi}|\psi\rangle+|\bar{\psi}\rangle}{\sqrt{2}}\right) \otimes|0\rangle^{\otimes 2} \otimes\left(\frac{(-1)^{\psi}|\psi\rangle+|\bar{\psi}\rangle}{\sqrt{2}}\right) \otimes|0\rangle^{\otimes 2} \otimes\left(\frac{(-1)^{\psi}|\psi\rangle+|\bar{\psi}\rangle}{\sqrt{2}}\right) \otimes|0\rangle^{\otimes 2}$
$\left|\psi_{3}\right\rangle=\left(\frac{(-1)^{\psi}|\psi, \psi, \psi\rangle+|\bar{\psi}, \bar{\psi}, \bar{\psi}\rangle}{\sqrt{2}}\right) \otimes\left(\frac{(-1)^{\psi}|\psi, \psi, \psi\rangle+|\bar{\psi}, \bar{\psi}, \bar{\psi}\rangle}{\sqrt{2}}\right) \otimes\left(\frac{(-1)^{\psi}|\psi, \psi, \psi\rangle+|\bar{\psi}, \bar{\psi}, \bar{\psi}\rangle}{\sqrt{2}}\right)$
which is indeed the proposed encoding.

