Exercise Set 12

Quantum Computation

Exercise 1 QM reminder and 3-qubit repetition code
Here is a first important fact in quantum mechanics:
Let A be an observable (= self-adjoint matrix) acting on some finite N-dimensional Hilbert space \mathcal{H}. Because A is self-adjoint, its eigenvectors $\left(\left|\psi_{i}\right\rangle, 1 \leq i \leq N\right)$ form an orthonormal basis of \mathcal{H}; let also $\left(\lambda_{i}, 1 \leq i \leq N\right)$ denote the corresponding eigenvalues of A.

Assume the current state of the system is $|\psi\rangle \in \mathcal{H}$. When one performs a measurement of A in state $|\psi\rangle$, then with probability $P(i)=\left|\left\langle\psi_{i} \mid \psi\right\rangle\right|^{2}$, the outcome state is $\left|\psi_{i}\right\rangle$ and the corresponding measured value of A is the eigenvalue λ_{i}. Note importantly that if $|\psi\rangle$ is already an eigenvector of A, then it is left unchanged.

Let now $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. These are observables acting on \mathbb{C}^{2} and satisfying

$$
X|x\rangle=|\bar{x}\rangle \quad \text { and } \quad Z|x\rangle=(-1)^{x}|x\rangle
$$

for $|x\rangle \in\{|0\rangle,|1\rangle\}$ (the computational basis of \mathbb{C}^{2}).
(a) What are the eigenvalues and eigenvectors of both X and Z ?
(b) Compute both the commutator and the anti-commutator of X and Z defined as

$$
[X, Z]=X Z-Z X \quad \text { and } \quad\{X, Z\}=X Z+Z X
$$

Consider now $\mathcal{H}=\left(\mathbb{C}^{2}\right)^{3}$, as well as the operators X_{i} and Z_{j} defined as

$$
X_{i}\left|x_{1}, x_{2}, x_{3}\right\rangle=\left|y_{1}, y_{2}, y_{3}\right\rangle, \quad \text { where } y_{i}=\bar{x}_{i} \text { and } y_{j}=x_{j} \text { for all } j \neq i
$$

and

$$
Z_{j}\left|x_{1}, x_{2}, x_{3}\right\rangle=(-1)^{x_{j}}\left|x_{1}, x_{2}, x_{3}\right\rangle
$$

Note: These are short-hand notations. The observable X_{1} for example is strictly speaking equal to $X_{1} \otimes I \otimes I\left(\right.$ acting on $\left.\mathcal{H}=\left(\mathbb{C}^{2}\right)^{3}\right)$.
(c) Compute the commutators $\left[Z_{i}, Z_{j}\right]$ and $\left[X_{i}, Z_{j}\right]$, for $i, j \in\{1,2,3\}$.

Here is another important fact in quantum mechanics:
We say that two observables A_{1}, A_{2} commute if $\left[A_{1}, A_{2}\right]=0$. If two observables commute, they can be measured without one measurement affecting another, regardless of the state.

Consider now the following quantum repetition code with 3 qubits: the initial state $\left|\psi_{0}\right\rangle=$ $\alpha|000\rangle+\beta|111\rangle$ (with $|\alpha|^{2}+|\beta|^{2}=1$) experiences potentially a bit-flip to become state $\left|\psi_{1}\right\rangle$.
(d) The observables $A_{1}=I \otimes Z_{2} \otimes Z_{3}$ and $A_{2}=Z_{1} \otimes I \otimes Z_{3}$ are then successively measured in state $\left|\psi_{1}\right\rangle$. Does the order matter here? And is $\left|\psi_{1}\right\rangle$ an eigenvector of both A_{1} and A_{2} ?
(e) Given the outcomes of these two measurements, describe what measurement X_{i} comes next to correct the potential bit-flip.
(f) Is it a problem that the measurement X_{i} does not necessarily commute with the operators A_{1} and A_{2} ? And is $\left|\psi_{1}\right\rangle$ an eigenvector of X_{i} ?
(g) In step (d), would a third measurement of the observable $A_{3}=Z_{1} \otimes Z_{2} \otimes I$ be any helpful?

Exercise 2 The Shor code

The Shor code uses 9 qubits one qubit and corrects one error (a bit flip or a phase flip). The code length is 9 , the code dimension is 2 (viewed as a subspace of the Hilbert space). Codewords are of the form $\alpha|0\rangle_{S}+\beta|1\rangle_{S}$ with

$$
\begin{aligned}
& \frac{|000\rangle+|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle+|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle+|111\rangle}{\sqrt{2}} \equiv|0\rangle_{\mathcal{S}} \\
& \frac{|000\rangle-|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle-|111\rangle}{\sqrt{2}} \otimes \frac{|000\rangle-|111\rangle}{\sqrt{2}} \equiv|1\rangle_{\mathcal{S}}
\end{aligned}
$$

Verify that the following circuit realizes the proposed (unitary) encoding:

