Astrophysics IV: Stellar and galactic dynamics Solutions

Problem 1:

Using the definition

$$
v_{c}=R \Omega(R)
$$

it follows that

$$
\frac{\mathrm{d} \Omega}{\mathrm{~d} R}=\frac{1}{R} \frac{\mathrm{~d} v_{c}}{\mathrm{~d} R}-v_{c} \frac{1}{R^{2}}
$$

Then

$$
\begin{aligned}
A(R) & \equiv \frac{1}{2}\left(\frac{v_{c}}{R}-\frac{\mathrm{d} v_{c}}{\mathrm{~d} R}\right)=\frac{1}{2}\left(-R\left(\frac{1}{R} \frac{\mathrm{~d} v_{c}}{\mathrm{~d} R}-\frac{v_{c}}{R^{2}}\right)\right)=-\frac{1}{2} R \frac{\mathrm{~d} \Omega}{\mathrm{~d} R} \\
B(R) & \equiv-\frac{1}{2}\left(\frac{v_{c}}{R}+\frac{\mathrm{d} v_{c}}{\mathrm{~d} R}\right)=-\frac{1}{2}\left(\Omega+\left(\frac{1}{R} \frac{\mathrm{~d} v_{c}}{\mathrm{~d} R}-\frac{v_{c}}{R^{2}}\right)+\frac{v_{c}}{R}\right)=-\left(\Omega+\frac{1}{2} R \frac{\mathrm{~d} \Omega}{\mathrm{~d} R}\right) \\
\Omega & =A-B=\frac{1}{2}\left(\frac{v_{c}}{R}-\frac{\mathrm{d} v_{c}}{\mathrm{~d} R}\right)+\frac{1}{2}\left(\frac{v_{c}}{R}+\frac{\mathrm{d} v_{c}}{\mathrm{~d} R}\right)=\frac{v_{c}}{R}=\Omega \\
\kappa^{2} & =\left(R \frac{\mathrm{~d}\left(\Omega^{2}\right)}{\mathrm{d} R}+4 \Omega^{2}\right)=\left(2 R \Omega \frac{\mathrm{~d} \Omega}{\mathrm{~d} R}+4 \Omega^{2}\right)=2 \Omega\left(R \frac{\mathrm{~d} \Omega}{\mathrm{~d} R}+2 \Omega\right) \\
& =2 \Omega(-2 B)=-4 B(A-B)
\end{aligned}
$$

Problem 2:

We have:

$$
\begin{aligned}
R^{2} & =x^{2}+y^{2} \\
\vec{L} & =\vec{r} \times \vec{v}=\vec{x} \times \dot{\vec{x}}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \times\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{array}\right)=\left(\begin{array}{c}
y \dot{z}-z \dot{y} \\
z \dot{x}-x \dot{z} \\
x \dot{y}-y \dot{x}
\end{array}\right)
\end{aligned}
$$

Since we're working in the $z=0$ plane, and the z component of \vec{L} is given by $L_{z}=x \dot{y}-y \dot{x}$, inserting this to compute L^{2} gives

$$
L^{2}=(y \dot{z}-z \dot{y})^{2}+(z \dot{x}-x \dot{z})^{2}+(x \dot{y}-y \dot{x})^{2}=\left(x^{2}+y^{2}\right) \dot{z}^{2}+L_{z}^{2}=R^{2} \dot{z}^{2}+L_{z}^{2}
$$

Now we use the energy conservation:

$$
E=\frac{1}{2} \dot{R}^{2}+\frac{1}{2} \dot{z}^{2}+\Phi_{e f f}(R, z)
$$

Now eliminate \dot{z}^{2} by using our expression for L^{2} :

$$
E=\frac{1}{2} \dot{R}^{2}+\frac{1}{2} \frac{1}{R^{2}}\left(L^{2}-L_{z}^{2}\right)+\Phi_{e f f}(R, z)
$$

Solving for \dot{R} gives and using $\Phi_{e f f}=\frac{1}{2} \frac{L_{z}^{2}}{R^{2}}+\Phi$:

$$
\dot{R}= \pm \sqrt{2\left(E-\frac{1}{2} \frac{L^{2}-L_{z}^{2}}{R^{2}}-\Phi_{e f f}\right)}= \pm \sqrt{2\left(E-\frac{L^{2}}{2 R^{2}}-\Phi\right)}
$$

Problem 3:

We start from the Lagrangian:

$$
\begin{equation*}
L(\vec{x}, \dot{\vec{x}})=\frac{1}{2}(\dot{\vec{x}}+\Omega \times \vec{x})^{2}-\Phi(\vec{x}) \tag{1}
\end{equation*}
$$

From the derivative of this Lagrangian, we can write the momentum \vec{p} :

$$
\begin{equation*}
\vec{p}=\dot{\vec{x}}+\Omega \times \vec{x} \tag{2}
\end{equation*}
$$

Using the Legendre transformation, we obtain the Hamiltonian that writes:

$$
\begin{equation*}
H(q, p)=\frac{1}{2} \vec{p}^{2}+\Phi(\vec{q})-\vec{\Omega} \cdot(\vec{q} \times \vec{p}) \tag{3}
\end{equation*}
$$

where we renamed \vec{x} by \vec{q}.
We set the rotation to be along the z axis, and for it to be uniformly rotating, it needs to be constant, i.e.

$$
\vec{\Omega}=\left(\begin{array}{l}
0 \\
0 \\
\Omega
\end{array}\right) \quad \Rightarrow \vec{\Omega} \cdot(\vec{q} \times \vec{p})=\Omega\left(q_{x} p_{y}-p_{x} q_{y}\right)
$$

The equations of motion in canonical coordinates are given by Hamilton's equations:

$$
\begin{equation*}
\dot{p}=-\frac{\partial}{\partial q} H(p, q), \quad \dot{q}=\frac{\partial}{\partial p} H(p, q) \tag{4}
\end{equation*}
$$

in our case:

$$
\begin{aligned}
\dot{q}_{x} & =p_{x}+\Omega q_{y} \\
\dot{q}_{y} & =p_{y}-\Omega q_{x} \\
\dot{p}_{x} & =-\frac{\partial}{\partial q_{x}} \Phi(q, p)+\Omega p_{y} \\
\dot{p}_{y} & =-\frac{\partial}{\partial q_{y}} \Phi(q, p)-\Omega p_{x}
\end{aligned}
$$

The relations between cartesian and canonical coordinates are:

$$
\begin{aligned}
q_{x} & =x \\
q_{y} & =y \\
p_{x} & =\dot{x}-\Omega y \\
p_{y} & =\dot{y}+\Omega x
\end{aligned}
$$

