Exercise 1 Convergents in Shor's algorithm

One runs Shor's algorithm in order to retrieve the period of the function $f(x)=3^{x} \bmod N$, where $N=35$ (yes, we all know that $N=35=5 \cdot 7$, but let us pretend that this factorization is not easy...). The algorithm uses $m=11$ qubits (so that $M=2^{m}=2^{\prime} 048 \geq N^{2}=1^{\prime} 225$). Using the method of convergents seen in class, describe which of the following outcomes y of the quantum circuit lead(s) to the identification of the correct period r of f :
(a) $y=171$
(b) $y=512$
(c) $y=853$

Exercise 2 Grover's algorithm for $N=4$
Let $x \in\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ and $f(x)=1$ if and only if $x=x_{0}$. Otherwise $f(x)=0$. We search x_{0} thanks to an "oracle" which returns the value of f when queried with an entry.
(a) What is the theoretical prediction for the number of queries of the oracle in the quantum setting when we use Grover's algorithm ?
(b) Show that the following

$$
U=\mathbb{I}-2 \underbrace{|00 \ldots 0\rangle}_{n \text { times }}\langle 00 \ldots 0|
$$

is unitary and show also that for $n=2$ it can be implemented by the following circuit:

(c) Take Grover's circuit and for $N=4$ compute the quantum state at each step of the algorithm. Draw a geometrical representation in an appropriate two dimensional space (like in class). Confirm that the measurement of the final state indeed gives x_{0} and that only one query of the oracle was needed.

