Exercise Set 9: Solution Quantum Computation

Exercise 1 Another algorithm involving the QFT
(a) The matrix elements of V_{f} are

$$
\langle y| V_{f}|x\rangle=e^{-\frac{2 \pi i}{M} f(x)}\langle y \mid x\rangle= \begin{cases}e^{-\frac{2 \pi i}{M} f(x)} & \text { if } x=y \\ 0 & \text { fi } x \neq y\end{cases}
$$

i.e., the matrix is diagonal and one checks trivially that $V_{f} V_{f}^{\dagger}=V^{\dagger} V_{f}=I$. For the QFT matrix, we have

$$
\langle y| Q F T|x\rangle=\frac{1}{\sqrt{M}} \sum_{y^{\prime}=0}^{M-1} e^{\frac{2 \pi i}{M} x y^{\prime}}\left\langle y \mid y^{\prime}\right\rangle=\frac{1}{\sqrt{M}} e^{\frac{2 \pi i}{M} x y} \quad \text { since }\left\langle y \mid y^{\prime}\right\rangle=\delta_{y, y^{\prime}}
$$

The inner product between two lines is given by

$$
\frac{1}{M} \sum_{y=0}^{M-1} e^{\frac{2 \pi i}{M}\left(x-x^{\prime}\right) y}= \begin{cases}1 & \text { if } x=x^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

so $(Q F T)(Q F T)^{\dagger}=(Q F T)^{\dagger}(Q F T)=I$.
(b) A state $|x\rangle$ is represented by

$$
|x\rangle=\left|x_{0}\right\rangle \otimes\left|x_{1}\right\rangle \otimes \cdots \otimes\left|x_{m-1}\right\rangle
$$

where $x=x_{0}+2 x_{1}+\cdots+2^{m-1} x_{m-1}, x_{i} \in\{0,1\}$ is represented in base 2. The Hilbert space is $\left(\mathbb{C}^{2}\right)^{\otimes m}$. The initial state is $|x=0\rangle=|0\rangle \otimes|0\rangle \otimes \cdots \otimes|0\rangle$.
(c) After the Hadamard gates, the state is

$$
\frac{1}{2^{m / 2}} \sum_{b_{1} \ldots b_{M}}\left|b_{1}\right\rangle \otimes\left|b_{2}\right\rangle \otimes \cdots \otimes\left|b_{M}\right\rangle=\frac{1}{\sqrt{M}} \sum_{x=0}^{M-1}|x\rangle
$$

After the V_{f} gate, the state is

$$
\frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} e^{-\frac{2 \pi i}{M} f(x)}|x\rangle
$$

After the QFT gate, the state is

$$
|\Psi\rangle=\frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} e^{-\frac{2 \pi i}{M} f(x)} \frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} e^{\frac{2 \pi i}{M} x y}|y\rangle=\frac{1}{\sqrt{M}} \sum_{y=0}^{M-1}\left\{\frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} e^{-\frac{2 \pi i}{M} f(x)} e^{\frac{2 \pi i}{M} x y}\right\}|y\rangle
$$

(d) For $f(x)=A x+B$, the coefficients of $|\Psi\rangle$ in the computational basis are

$$
\frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} e^{-\frac{2 \pi i}{M} A x} e^{-\frac{2 \pi i}{M} B} e^{\frac{2 \pi i}{M} x y}=e^{-\frac{2 \pi i}{M} B} \frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} e^{\frac{2 \pi i}{M}(y-A) x} .
$$

The probability to observe a given state $|y\rangle$ after the measurement is

$$
\mathbb{P}(y)=\frac{1}{M}\left|\sum_{x=0}^{M-1} e^{\frac{2 \pi i}{M}(y-A) x}\right|^{2}
$$

For $y=A: \mathbb{P}(y=A)=1$ et so $\mathbb{P}(y \neq A)=0$. Therefore, a single measurement suffices to retrieve the value of A. On the other hand, B only appears as a global phase and cannot therefore be determined.

Exercise 2 Gate U_{f} for $f(x)=a^{x} \bmod N$
(a) Observe that $3^{1} \bmod 8=3,3^{2} \bmod 8=1$, so $3^{x} \bmod 8=1$ or 3 depending whether x is even of odd. This gives rise to the circuit on the figure below on the left (where $\left(x_{2}, x_{1}, x_{0}\right)$ is the binary representation of $\left.0 \leq x \leq 7\right)$. You can check that indeed, $\left(y_{2}, y_{1}, y_{0}\right)=f\left(x_{2}, x_{1}, x_{0}\right)=\left(0, x_{0}, 1\right)$; when x is even (i.e., $\left.x_{0}=0\right)$, then $y=1=(0,0,1)$ in binary; and when x is odd (i.e., $x_{0}=1$), then $y=3=(0,1,1)$ in binary,
(b) Observe that $3^{1} \bmod 16=3,3^{2} \bmod 16=9,3^{3} \bmod 16=11,3^{4} \bmod 16=1$, so similarly, we build the circuit on the figure below on the right, and you can check again that $\left(y_{3}, y_{2}, y_{1}, y_{0}\right)=f\left(x_{3}, x_{2}, x_{1}, x_{0}\right)$.

