Exercise 1 Another algorithm involving the QFT

Let $M = 2^m$. For $x \in \{0, \ldots, M-1\}$ an integer, let us recall that the QFT is defined as

$$QFT |x\rangle = \frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} e^{\frac{2\pi i}{M}xy} |y\rangle$$

Let $f : \{0, \ldots, M-1\} \to \{0, \ldots, M-1\}$ be an arithmetic function and V_f be the $M \times M$ matrix defined as

$$V_f|x\rangle = e^{-\frac{2\pi i}{M}f(x)}|x\rangle$$

- (a) What are the matrix elements of both QFT and V_f in the basis $\{|x\rangle, x = 0, \ldots, M-1\}$? Prove that these two matrices are unitary.
- (b) Let

$$\Psi\rangle = (QFT)(V_f)H^{\otimes m}|0\rangle$$

where $|0\rangle$ is the sate corresponding to the integer $0 \in \{0, \ldots, M-1\}$. Explain how to represent this identity by a quantum circuit, notably how to represent the various states with qubits and the number of needed qubits, then draw the circuit.

- (c) Compute the state at each stage in the circuit, and in particular the output state $|\Psi\rangle$.
- (d) Let $A, B \in \{0, ..., M-1\}$ and $f(x) = Ax + B \mod M$. We measure the state in the computational bases. What is the minimum number of measures need to determine the value of A? Can we also determine the value of B with this process? Justify your answers.

Exercise 2 Gate U_f for $f(x) = a^x \mod N$

In class, you have seen the construction of the gate U_f in the general case. Here, we ask you to build this gate explicitly in two particular cases:

- (a) a = 3 and N = 8
- (b) a = 3 and N = 16

Hints: - For this exercise, it helps to think first at what are the possible values taken by $a^x \mod N$ for all values $0 \le x \le N - 1$.

- For the purpose of the exercise, use $n = \log_2(N)$ bits for each variable x or y (instead of $m = \log_2(M)$ bits, where $M = N^2$, as seen in class).

Exercise 3 Convergents in Shor's algorithm

One runs Shor's algorithm in order to retrieve the period of the function $f(x) = 3^x \mod N$, where N = 35 (yes, we all know that $N = 35 = 5 \cdot 7$, but let us pretend that this factorization is not easy...). The algorithm uses m = 11 qubits (so that $M = 2^m = 2'048 \ge N^2 = 1'225$). Using the method of convergents seen in class, describe which of the following outcomes yof the quantum circuit lead(s) to the identification of the correct period r of f:

(a)
$$y = 171$$
 (b) $y = 512$ (c) $y = 853$