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RoboGen - Under the hood

You might ask yourself, how RoboGen actually works behind the curtain of abstraction
of the RoboGen web interface.

How do neural network controllers (brains) work in RoboGen?

In RoboGen, the behaviour of your robot is defined by the weights of Artificial Neural
Networks (ANNs). Theoretically, large enough artificial neural networks can represent a
large range of behaviours. The number of sensors and actuators of our robot define the
number of input and output neurons. Each sensor signal is mapped to an input neuron,
and each output neuron controls an actuator. Additionally, the neural network can
possess a number of internal or hidden units not directly connected to any inputs or
outputs. Simple neurons compute its output by first computing weighted sums of its
inputs and then applying a sigmoid activation function. Alternatively, RoboGen can
generate oscillator neurons, as they have been shown to drastically speed up the
evolution of effective controllers for locomotion. Specifically, these oscillator neurons
do not receive any input, but rather output a sinusoid oscillation as a function of time.
Each oscillator neuron is defined by its period, its amplitude, and its phase-offset from
a central clock.

Unlike the learning of weights of fully-connected deep neural networks with
backpropagation, evolutionary algorithms enable the evolution of neural networks with
multiple types of neurons and changing neural network architectures (e.g. variable
numbers of hidden neurons).

Each neuron representation in this list stores the layer (input, output, or hidden) of the
neuron, the type (sigmoid or oscillator) of the neuron, and its parameters (bias for
sigmoid neurons; period, amplitude, and phase-offset for oscillator neurons).
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The connections and weights for the neural network are maintained in a single map:
weights for the whole robot that maps ordered-pairs of neurons to floating point values.
If an entry weights[(i, j)]S exists, then the connection from neuron i to neuron j exists
with weight weights[(i, j)]S. If no such entry exists, then there is no connection from i
to j in the neural network. For the purpose of applying evolutionary variation operators,
this representation is converted into a single vector containing all weights and
parameters.

How is body morphology defined in RoboGen?

RoboGen robots are made up of predefined and parameterized body parts, each of
which is composed of one or more 3D-printed structural elements in possible
combination with off-the-shelf electronic components: sensors, actuators, and an
Arduino-based microcontroller. In order to support a large diversity of morphological
possibilities, these parts can be assembled together into a variety of configurations.

The body parts are assembled together by means of plates (male) that slide into
connection slots (female). Additionally, the system includes body parts with modifiable
parameters (e.g., dimensions and angles), which allow for leveraging the customization
capabilities offered by 3D printing. All RoboGen robots begin with the
CoreComponent, which serves as the root of the tree. The other body parts fall into
four categories: bricks, joints, sensors, and connectors. The bricks include the
CoreComponent and FixedBricks: while the CoreComponent houses the
microcontroller and battery, the FixedBricks are empty, but otherwise these parts
are identical. Each FixedBrick measures 41x41 mm horizontally, is 35 mm high, and
has (female) connection slots on its four sides. There are currently three different types
of joints: ParametricJoints, ActiveHinges, and PassiveHinges.



ParametricJoints are rigid connections with a variable length and angle that allow
the robot’s basic shape to not be confined by a Cartesian grid. PassiveHinges
include a passive joint with one degree of freedom composed of a brass axle for
minimal friction. ActiveHinges include an active joint with one degree of freedom
actuated by a servomotor. All joints contain two (male) connections plates at opposite
ends. There are two types of sensor body parts: LightSensors and IrSensors,
which can provide the robot with additional sensory feedback. The former are analogue
photoresistors, which output a signal proportional to the perceived light intensity. They
are directional to enable light following behaviour and calibrated to discount for
ambient light.
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How does the evolutionary algorithm change body and brain in RoboGen?

RoboGen comprises two main components: an evolution engine and a physics-based
simulation engine. In short, the evolution engine runs an evolutionary algorithm by
starting with a randomly initialized population of abstract robot representations,
sending each representation to the simulation engine, which first translates each
abstract representation into a concrete, physically simulated robot, simulates this robot
in a virtual environment, and finally reports back a performance measure or fitness for
the given robot. The evolution engine then eliminates the poor performing robot
representations and reproduces the well performing ones (with variations). The newly
created robot representations are next sent to be evaluated in the simulation engine,
and the process repeats until a stopping condition is reached (usually a fixed number
of iterations).

Evolution Engine:

The evolution engine contains all the components needed to run such an evolutionary
algorithm on a population of robots: representation, variation, and selection
mechanisms. The evolutionary algorithm is capable of operating in two modes:
—onIy mode, which only evolves the controller or ‘brain’ of an existing robot
morphology, and mode, which evolves both the brain and ‘body’ (morphology) of
robots. In brain-only mode, the body tree must be manually defined (or previously
evolved). When using full evolution, it is possible to either “seed” evolution with an
existing morphology or create the initial population completely at random.

At each generation, new body trees are created by mutating clones of well-performing
robots using one or more of the mutation operators based on user-configurable
probabilities. The body plan defines the inputs and output of the robot’s brain, i.e., as
sensor or motor body parts are added or removed from the body tree, input and output
neurons (respectively) are added or removed from the brain. Additionally, hidden
neurons may be added or removed based on configurable probabilities. When a neuron
is removed, all connections to/from that neuron are also removed. When a neuron is
inserted, zero-weight outgoing connections are created to all sigmoid hidden and
output neurons. When a hidden or output neuron is inserted, it is chosen to be either a
sigmoid or oscillator neuron based on a configurable probability. If it is a sigmoid
neuron, zero-weight incoming connections are created from all neurons. In addition to
these topological changes, the parameters of a robot’s brain (connection weights and
neuron parameters) are mutated by Gaussian perturbations based on user defined
probabilities and magnitudes.

Sexual reproduction (AKA crossover) is possible when evolving ANNs with a fixed
topology (e.g., doing brain-only evolution with 0 probability of adding additional hidden



neurons), but otherwise is disabled for simplicity. When two brains are crossed over,
the vectors of weights and parameters are concatenated into a single vector, single
point crossover is applied, and this crossed-over vector is used to create a new brain
representation prior to the application of the parametric mutations. At each generation,
the current m parents compete in tournaments (of configurable size) to decide which
parents get to produce offspring. This process repeats until children are produced.
After the children have been evaluated in the simulation engine the next set ofE
parents are chosen by choosing the most fit of either the current children
selection) or the most fit out of the children and previous m parents selection),
and this process repeats for the user-specified number of generations.

In addition to the basic evolution mode just described, RoboGen also supports
evolving brains via a more sophisticated EA, known as HyperNEAT, which indirectly
encodes the weights and parameters of the neural network using an encoding inspired
by developmental biology.

Simulation Engine:

Every newly created robot representation (brain and body) is sent to the physics-based
simulation engine in order to evaluate its fithess. The abstract representation is
translated into a physical model of the robot along with code for operating its brain,
and this robot is placed inside a user-defined, simulated environment and allowed to
act. The robot’s fitness is computed either using one of the built-in fithess functions, or
the user may write a custom fitness function in JavaScript.

By default, the environment is an infinite flat plane with Earth normal gravity. However,
this can be modified in a number of ways, the most important of which is through the
inclusion of obstacles. By defining a set of obstacles and light sources (either
stationary or movable) that the robot can interact with, it is possible to create more
complex environments such as rough terrains, mazes, stairs, goal locations etc.

Further information

Online documentation: https://robogen.org/docs/robogen-software-suite/

Source code: https://github.com/lis-epfl/robogen
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