

Then two gates are used successively:

1. Up is reflection w.r.t. IP> moly2>

2. R and reflection w.r.t. 14/2 milles >

Therefore, after k iterations of the

G = R. Up gate, the state becauses

 $|\psi^{(k)}\rangle = \cos\left((2k+1)\Theta_{c}\right) \cdot |P\rangle + \sin\left((2k+1)\cdot\Theta_{c}\right) \cdot |S\rangle$

The question is then: how to choose k so as

to end up as close as possible to state (s>?

1. Let us first assume that M is known.

a) Assume M=1 (i.e. A= {x*}) and N relatively large: In this case, $\sin \Theta_0 = \frac{1}{\sqrt{N}}$ i.e. $\Theta_0 \simeq \frac{1}{\sqrt{N}}$ We target $\sin ((2k+1)\Theta_0) = 1$, i.e. $(2k+1)\Theta_0 = \frac{1}{2}$

Therefore, we should choose $k = \lfloor \frac{\pi}{4} \sqrt{N} - \frac{4}{2} \rfloor$

Let z be the autput state. With the

above choice of k, we obtain

 $P(x=x^{*}) = |\langle S|\psi^{(k)}\rangle|^{2} = Sn((2km)G_{0})^{2}$ $= 1 - O\left(\frac{1}{N}\right)$

Grover's algorithm therefore finds z=x*

with high probability in k = O(IN) calls

to the oracle Up (<< O(N) calls classically).

In Huis case, $\sin \Theta_0 = \sqrt{\frac{11}{N}} = \frac{1}{2}$ so $\Theta_0 = \frac{11}{6}$

and therefore:

$Sin\left((2km)\Theta_0\right) = \frac{\pi}{2}$ for k=1!

A single iteration suffices then to reach

Exactly the state 15>, is. P(xeA)=1

C) general M:

· If M> = N, Hen P(success) ≥ = with a

classical algorithm and a single call to

the cracle f

· assume therefore $M < \frac{3}{4}N$:

Mus means $\sin(\Theta_0) < \frac{\sqrt{3}}{2}$, i.e. $\Theta_0 < \frac{\sqrt{3}}{3}$

choose then $k = \lfloor \frac{\pi}{40} \rfloor$

Claim: in this case, P(success) > 1/4

(So we can make this probability arbitrarily close

to 1 by repeating multiple times the experiment)

Proof: by design, $k = \frac{T}{400} - \frac{1}{2} + S$ with $|S| < \frac{1}{2}$ $So(2k+1) \Theta_0 = \frac{T}{2} + 2S\Theta_0$ with $2|S|\Theta_0 < 2|S|\frac{T}{3} < \frac{T}{3}$ ie $\sin((2k+1)G_{0})^{2} > \sin(\frac{\pi}{2}-\frac{\pi}{3})^{2} = \sin(\frac{\pi}{6})^{2} = \frac{1}{4}$ #

2. Let us now assume that M is unknown

How to choose k in this case? Seems like mission

impossible... Let us apply the following algorithm:

- · choose $x \in \{g_1\}^n$ uniformly at random;
 - if it turns aut xEA, then done.
- · choose K E { G ... JN-1 } uniformly at random
 - and apply K iterations of G=R.Up;
 - then autput the state measured.

Claim: again, in this case, P(success) = 1/4.

Proof: · If M> 3 N, then the first step is successful

- with probability > = = = = Assume therefore Merefore Mere
 - . In this case, we have

 $P(success) = \sum_{k=0}^{\sqrt{N-1}} P(success(K=k)) \cdot P(K=k)$

That said, $P(success | k=k) = sin((2k+1)\theta_0)^2$

So $P(success) = \frac{1}{N} \sum_{k=0}^{N-1} s_{k} ((2k+1)\theta_{0})^{2}$

 $=\frac{1}{2}-\frac{\sinh\left(4\Theta_{0}\sqrt{N}\right)}{4\sqrt{N}\sin\left(2\Theta_{0}\right)}$ (trigonometric identity)

But Isin (400 Ju) / 21 > 1

and $\sin(2\theta_0) = 2\sin\theta_0 \cdot \cos\theta_0 = 2\sqrt{\frac{1}{N}} \cdot \sqrt{\frac{N-1}{N}} > \sqrt{\frac{1}{N}} = \frac{1}{\sqrt{N}}$

So $P(success) \ge \frac{1}{2} - \frac{1}{4} = \frac{1}{4} + \frac{1}{4}$

Even if M is not known, Using Graver's

circuit a random number of twos (< Ju)

alputs a state XEA with probability 23

And by repeating the experiment, this

success probability can be amplified

arbitrarily close to 1.

Applications

As mentioned last week, we should be

able to build the circuit Up ...

1. SAT formulas

Let us consider a Boolean function of

Such Bodean functions are called

SAT formulas (SAT as in satisfiability)

When n is large, and the number m

of clauses (= expressions in parentheses) of

the formula is also large, it is unclear

hav to find value(s) of x such that f(x)=1

Nevertheless, it is straightforward to

implement the circuit Up associated to f.

2. Factoring (agan)

There is a (non-trivial) way to apply Grover's

algorithm in order to reduce the search space for factoring large values of N into products of primes. The improvement is not expandial, but still quadratic, which is noticeable.