Quantum computation: lecture 11
Grover's algorithm (cont'd)
Reminder: The algorithm starts from state

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{N}} \sum_{x \in\left\{0,13^{n}\right.}|x\rangle=\sqrt{\frac{N-M}{N}} \cdot|p\rangle+\sqrt{\frac{\pi}{N}} \cdot|s\rangle \\
& =\cos \theta_{0}|p\rangle+\sin \theta_{0}|s\rangle
\end{aligned}
$$

where $\left\{\begin{array}{l}|P\rangle=\frac{1}{\sqrt{N-m}} \sum_{x \in A^{C}}|x\rangle \\ |s\rangle=\frac{1}{\sqrt{\pi}} \sum_{x \in A}|x\rangle\end{array}\right.$

Then two gates are used successively:

1. Hf \leftrightarrow reflection w.r.t. $|P\rangle \leadsto\left|\varphi_{2}\right\rangle$
2. $R \leftrightarrow$ reflection writ. $\left|\psi_{1}\right\rangle \leadsto\left|\psi_{3}\right\rangle$

So $G=R \cdot U_{f}$
\leftrightarrow rotation of angle $2 \theta_{0}$

Therefore, after k iterations of the $G=R \cdot U_{f}$ gate, the state becanes

$$
\left|\psi^{(k)}\right\rangle=\cos \left((2 k+1) \theta_{0}\right) \cdot|p\rangle+\sin \left((2 k+1) \cdot \theta_{0}\right) \cdot|s\rangle
$$

The question is then: haw to choose k so as to end up as close as possible to state $|s\rangle$?

1. Let us first assume that M is known.
a) Assume $M=1$ (ie. $\left.A=\left\{x^{*}\right\}\right)$ and N relatively large:

In this case, $\sin \theta_{0}=\frac{1}{\sqrt{N}}$ ie. $\theta_{0} \simeq \frac{1}{\sqrt{N}}$
We target $\sin \left((2 k+1) \theta_{0}\right)=1$, ie. $(2 k+1) \theta_{c}=\frac{\pi}{2}$ Therefore, we should choose $k=\left\lfloor\frac{\pi}{4} \sqrt{N}-\frac{1}{2}\right\rfloor$

Let x be the output state. With the above choice of k, we obtain

$$
\begin{aligned}
P\left(x=x^{*}\right) & =\left|\left\langle s \mid \psi^{(k)}\right\rangle\right|^{2}=\sin \left((2 k+1) \theta_{0}\right)^{2} \\
& =1-O\left(\frac{1}{N}\right)
\end{aligned}
$$

Grover's algorithm therefore finds $x=x^{*}$ with high probability in $k=O(\sqrt{N})$ calls to the cradle Hf ($<O(N)$ calls classically).
b) Special case $M=\frac{N}{4}$:

In this case, $\sin \theta_{0}=\sqrt{\frac{M}{N}}=\frac{1}{2}$ so $\theta_{0}=\frac{\pi}{6}$ and therefore:

$$
\sin \left((2 k+1) \theta_{0}\right)=\frac{\pi}{2} \quad \text { for } k=1!
$$

A single iteration suffices then to reach exactly the state $|s\rangle$, ie. $P(x \in A \mid=1$
c) general M:

- if $M \geqslant \frac{3}{4} N$, then $P($ success $) \geqslant \frac{3}{4}$ with a classical algorithm and a single call to the crackle f
- assume the refire $M<\frac{3}{4} N$:
this means $\sin \left(\theta_{0}\right)<\frac{\sqrt{3}}{2}$, ie. $\theta_{0}<\frac{\pi}{3}$ choose then $k=\left\lfloor\frac{\pi}{4 \theta_{0}}\right\rfloor$

Claim: in this case, P (success) $\geqslant \frac{1}{4}$ (so we can make this probability arbitrarily close to 1 by repeating multiple times the experiment)
Proof: by design, $k=\frac{\pi}{4 \theta_{0}}-\frac{1}{2}+\delta$ with $|\delta|<\frac{1}{2}$ so $(2 k+1) \theta_{0}=\frac{\pi}{2}+2 \delta \theta_{0}$ with $2|\delta| \theta_{0}<2|\delta| \frac{\pi}{3}<\frac{\pi}{3}$ ie. $\sin \left((2 k+1) \theta_{0}\right)^{2}>\sin \left(\frac{\pi}{2}-\frac{\pi}{3}\right)^{2}=\sin \left(\frac{\pi}{6}\right)^{2}=\frac{1}{4}=$
2. Let us now assume that M is unknown How to choose k in this case? Seems like mission impossible... Let us apply the following algorithm:

- choose $x \in\{91\}^{n}$ uniformly at randan; if it turns out $x \in A$, then done.
- choose $K \in\{0 \ldots \sqrt{N}-1\}$ uniformly at random and apply K iterations of $G=R \cdot U_{f}$; then output the state measured.

Claim: again, in this case, $P($ success $) \geqslant \frac{1}{4}$!
Proof:

- If $M \geqslant \frac{3}{4} N$, then the first step is succesfal with probability $\geqslant \frac{3}{4} \geqslant \frac{1}{4}$. Assume therefore $\pi<\frac{3}{4} N$.
- In this case, we have

$$
P(\text { success })=\sum_{k=0}^{\sqrt{N}-1} P(\text { success }(K=k) \cdot \underbrace{P(K=k)}_{=1 / \sqrt{N}}
$$

That said, $P($ success $\mid k=k)=\sin \left((2 k+1) \theta_{0}\right)^{2}$
So $P($ success $)=\frac{1}{\sqrt{N}} \sum_{k=0}^{\sqrt{N}-1} \sin \left((2 k+1) \theta_{0}\right)^{2}$
$=\frac{1}{2}-\frac{\sin \left(4 \theta_{0} \sqrt{N}\right)}{4 \sqrt{N} \sin \left(2 \theta_{0}\right)}$ (trigonometric identity)
But $\left|\sin \left(4 \theta_{0} \sqrt{N}\right)\right|<1$
and $\sin \left(2 \theta_{0}\right)=2 \sin \theta_{0} \cdot \cos \theta_{0}=2 \sqrt{\frac{M}{N} \cdot \sqrt{\frac{N-M}{N}}}>\sqrt{\frac{M}{N}} \geqslant \frac{1}{\sqrt{N}}$
So $P($ success $) \geqslant \frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
\#

Conclusion
Even if M is not known, Using Grover's circuit a randan number of times $(<\sqrt{N})$ outputs a state $x \in A$ with probability $\geqslant \frac{1}{4}$ And by repeating the experiment, this success probability can be amplified arbitrarily close to 1.

Applications
As mentioned last week, we should be able to build the circuit Af...

1. SAT formulas

Let us consider a Boolean function of the farm:

$$
\begin{aligned}
& \text { The farm: } \\
& f(\underbrace{x_{1}, x_{2}, x_{3}, x_{3}}_{n=4 \text { variables here }})=\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\overline{x_{1}} \vee x_{3} \vee x_{4}\right)
\end{aligned}
$$

Such Bodean functions are called SAT formulas (SAT as in satisfiability) When n is large, and the number m of clauses (=expressions in parentheses) of the formula is also large, it is unclear how to find value (s) of x such that $f(x)=1$ Nevertheless, it is straightforward to implement the circuit Of associated to f.
2. Factoring (again)

There is a (nam-trivial) way to apply Graver's algorithm in order to reduce the search space for factoring large values of N into products of primes.
The improvement is not exponential, but still quadratic, which is noticeable.

