Quantum computation: lecture 11 Grover's algorithm (cont'd)

Reminder: The algorithm starts from state

= cos 60 |P) + 514 60 |5> where $\{|P\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \in A^c} |x\rangle$ 14) (60) (P) $(|S\rangle = \frac{1}{\sqrt{11}} \sum_{x \in A} |x\rangle$ what we want

Then two gates are used successively: 1. Up => reflection w.r.t. 1P> ~ 142> 2. R => reflection wr.t. 14) nes /43> 50 G=R.Uf 16 2. 14x>
36 6c F > 14x>
1-6c F > 14x> c> rotation
of angle 260 Therefore, after k iterations of the $G=R\cdot U_f$ gate, the state becames

$$|\psi^{(k)}\rangle = \cos((2k+1)\Theta_e)\cdot|P\rangle + \sin((2k+1)\cdot\Theta_e)\cdot|S\rangle$$

$$|\psi^{(k)}\rangle$$

$$|$$

The question is then: how to choose k so as to end up as close as possible to state 15>? 1. Let us first assume that M is known. a) Assume M=1 (ie. A={x*}) and N relatively large:

In this case, sin $\Theta_0 = \frac{1}{\sqrt{N}}$ i.e. $\Theta_0 \approx \frac{1}{\sqrt{N}}$ We target sin $(2k+1)\Theta_0 = 1$, i.e. $(2k+1)\Theta_0 = \frac{T}{2}$ Therefore, we should choose $k = \lfloor \frac{T}{4} \sqrt{N} - \frac{1}{2} \rfloor$

Let z be the autput state. With the above choice of k, we obtain $P(x=z^*) = |\langle s|\psi^{(k)}\rangle|^2 = \sin((2k+1)\epsilon_0)^2$

Grover's algorithm therefore finds $z=x^*$ with high probability in k=O(TV) calls to the cracle Uf (<<<>>C(N) calls classically).

 $= 1 - O(\frac{1}{N})$

In this case, $\sin \Theta_0 = \int \frac{17}{N} = \frac{1}{2}$ so $\Theta_0 = \frac{\pi}{6}$ and therefore:

Sin
$$(2km)\Theta_0) = \frac{\pi}{2}$$
 for $k=1!$

A single iteration suffices then to reach exactly the state IS>, ie. P(xeA)=1

c) general M:

. If $M \geqslant \frac{3}{4}N$, then $P(success) \geqslant \frac{3}{4}$ with a classical algorithm and a single call to the oracle f. assume therefore $M < \frac{3}{4}N$:

Hus means sin (Θ_0) $< \frac{\sqrt{3}}{2}$, i.e. $\Theta_0 < \frac{\pi}{3}$

choose then $k = \lfloor \frac{\pi}{400} \rfloor$

Claim: in this case, P(success) > 1 (so we can make this probability arbitrarily close to 1 by repeating multiple times the experiment) Proof: by design, $k = \frac{\pi}{400} - \frac{1}{2} + \delta$ with $|\delta| < \frac{1}{2}$ So $(2k+1)\theta_0 = \frac{\pi}{2} + 2\delta\theta_0$ with $2|\delta|\theta_0 < 2|\delta|\frac{\pi}{3} < \frac{\pi}{3}$ ie sin $((2k+1)G_6)^2 > sin (\frac{\pi}{2} - \frac{\pi}{3})^2 = sin (\frac{\pi}{6})^2 = \frac{1}{4}$

2. Let us now assume that Mis unknown How to choose k in this case? Seems like mission impossible... Let us apply the following algorithm: · choose $x \in \{91\}^n$ uniformly at randon; if it turns out xEA, then done. · choose K & & 3... JN-13 uniformly at random and apply k iterations of G=R.Up; then output the state measured.

Claum: again, in this case, P(success) > 1! Proof: · If M> 3 N, then the first step is successful with probability > 3 > 1. Assume therefore M<3N.

· In this case, we have

$$P(success) = \sum_{k=0}^{\sqrt{N-1}} P(success(K=k) \cdot P(K=k)) = 1/\sqrt{N}$$

So
$$P(success) = \frac{1}{N} \sum_{k=0}^{N-1} sin((2k+1)\theta_0)^2$$

$$=\frac{1}{2}-\frac{\sinh(4\theta_0\sqrt{N})}{4\sqrt{N}\sin(2\theta_0)}$$
 (trigonometric identity)

But
$$|\sin(4\Theta_0 \sqrt{N})| < 1$$

and $|\sin(4\Theta_0 \sqrt{N})| < 1$

and $|\sin(2\Theta_0)| = 2 \sin \Theta_0 \cdot \cos \Theta_0 = 2 \sqrt{\frac{11}{N}} \cdot \sqrt{\frac{N-17}{N}} > \sqrt{\frac{17}{N}} > \sqrt{\frac{17}{$

Conclusion

Even if M is not known, using Grover's circuit a random number of times (< Ju) outputs a state XEA with probability 2 % And by repeating the experiment, this success probability can be amplified arbitrarily close to 1.

Applications

As mentioned last week, we should be able to build the circuit Up ...

Let us consider a Boolean function of He form: or NOT AND $f(x_1, x_2, x_3, x_4) = (x_1 \sqrt{x_2}) \wedge (\overline{x_1} \sqrt{x_3} \sqrt{x_4})$

n=4 variables here

Such Bodean functions are called SAT formulas (SAT as in satisfiability) When n is large, and the number m of clauses (= expressions in parentheses) of the formula is also large, it is unclear how to find value(s) of x such that f(x)=1 Nevertheless, it is straight forward to implement the circuit Uf associated to f.

2. Factoring (again) There is a (non-trivial) way to apply Graver's algorithm in order to reduce the search space for factoring large values of N into products of primes.

The improvement is not exponential, but still quadratic, which is noticeable.