Quantum computation: lecture 10
Grover's algorithm
Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a Boolean function and $A=\left\{x \in\{0,1\}^{n}: f(x)=1\right\}$
We are considering the search problem, namely to identify one element x of A with as few calls as possible to the crack f.

Consider first the case where $A=\left\{x^{*}\right\}$, singleton:
Classically, identifying x^{*} may require up to $N=2^{n}$ calls to the grade f, in the worst case.

As we will see, Grover's quantum al gorithm only requires $\sqrt{N}=2^{n / 2}$ calls to the parade f to identify x^{*}.

Note: Grover's algorithm is usually presented soling the following problem: given a directory of N names in alphabetical order and corespanding phone numbers, it allows to recover the name corresponding to a given phone number in only \sqrt{N} steps (instead of N steps classically).

However, in order to work, Grover's algarith requires us to build the gate Hf, which is not doable in the directory search pb, as we know nothing about the function f!

But please be patient: we will see later other interesting applications of Grover's algorithm.

Note also thar we will consider in general functions f with $|A|=M \in\{1 . . N\}$.
Surprisingly perhaps, considering this generalization (without focusing on the case $M=1$) will help us visualize better haw the algorithm works!

Let us compute (as already done multiple times)

$$
\begin{aligned}
\cdot\left|\psi_{1}\right\rangle & =H|0\rangle \otimes \ldots \otimes H|0\rangle \otimes H(1\rangle \\
= & \frac{1}{\sqrt{N}} \sum_{x \in\{0,1\}^{n}}|x\rangle \otimes \underbrace{|-\rangle}_{\left[=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)\right]} \\
\cdot\left|\psi_{2}\right\rangle & =\frac{1}{\sqrt{N}} \sum_{x \in\{a 1\}}(-1)^{f(x)}|x\rangle \otimes|-\rangle
\end{aligned}
$$

So far, nothing new. Now, remember that in our case, $M=|A|=\{x: f(x)=1\}$, so Therefore:

$$
\begin{aligned}
& N-M=\mid A C \\
& =\{x: f(x)=0\} .
\end{aligned}
$$

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =\frac{1}{\sqrt{N}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}|x\rangle \otimes|-\rangle \\
& =\frac{1}{\sqrt{N}} \cdot\left(\sqrt{\frac{N-M}{N-M}} \sum_{x \in A^{c}}|x\rangle-\sqrt{\frac{M}{N}} \sum_{x \in A}|x\rangle\right) \otimes|-\rangle \\
& =\left(\sqrt{\frac{N-M}{N}}\left(\frac{1}{\sqrt{N-M}} \sum_{x \in A^{\top}}|x\rangle\right)-\sqrt{\frac{M}{N}}\left(\frac{1}{\sqrt{M}} \sum_{x \in A}|x\rangle\right)\right) \otimes|-\rangle
\end{aligned}
$$

Let us write $|P\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \in A^{C}}|x\rangle$ and $|s\rangle=\frac{1}{\sqrt{\pi}} \sum_{x \in A}|x\rangle$: both $|p\rangle$ and $|s\rangle$ are quantum states (normalized to 1) and $\left|\psi_{2}\right\rangle$ can be rewritten as

$$
\left|\psi_{2}\right\rangle=\left(\sqrt{\frac{N-M}{N}}|P\rangle-\sqrt{\frac{M}{N}}|5\rangle\right) \otimes|-\rangle
$$

[Fran now ar, we will forget the extra l $1 \rightarrow$ state.]

Note also that $\left(\sqrt{\frac{N-M}{N}}\right)^{2}+\left(\sqrt{\frac{M}{N}}\right)^{2}=\frac{N-M}{N}+\frac{M}{N}=1$, so there exists $\theta_{0} \in\left[0, \frac{\pi}{2}\right]$ such that $\cos \theta_{0}=\sqrt{\frac{N-M}{N}}$ and $\sin \theta_{0}=\sqrt{\frac{M}{N}}$ and $\left|\psi_{2}\right\rangle=\cos \theta_{0}|p\rangle-\sin \theta_{0}|s\rangle$ Likewise, observe that

$$
\left|\psi_{1}\right\rangle=\cos \theta_{0}|p\rangle+\sin \theta_{0}|s\rangle
$$

(if we again forget the extra $1-$) state)

Geometric interpretation

$$
|P\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \in A^{C}}|x\rangle \text { and }|s\rangle=\frac{1}{\sqrt{\pi}} \sum_{x \in A}|x\rangle
$$

are orthogonal (as they share no common basis element), so we obtain the following picture:

The action of the gate U_{f} an state $\left|\psi_{1}\right\rangle$ can therefore be interpreted as a reflection with respect to the axis $|P\rangle$!

But note that we do not know the axes |P> and |S>; this is exactly what we are after; more precisely, ar aim now is to pash as much as possible the state of the system towards |S), which contains only elements $x \in A$.

Reflection gate R
A first step in this direction is done by applying the gate R, which is another reflection with respect to state $\left|\psi_{1}\right\rangle$:

Building such a gate R does not require using the function f again, as remember that $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{N}} \sum_{x \in\{9,1\}^{n}}|x\rangle(\otimes|-\rangle)$, simply. Here is the geanetric procedure to build R:

$$
\begin{aligned}
& \text { We have } R|\varphi\rangle=2\left\langle\varphi_{1} \mid \varphi\right\rangle \cdot\left|\varphi_{1}\right\rangle-|\varphi\rangle \\
& =2\left|\varphi_{1}\right\rangle\left\langle\varphi_{1} \mid \varphi\right\rangle-|\varphi\rangle \\
& =\left(2 \frac{\left.\left|\varphi_{1}\right\rangle\left\langle\psi_{1}\right|-I_{n}\right) \cdot(\varphi\rangle}{\text { matrix! }}\right. \\
& =\left(2 H^{8 n}\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right| H^{8 n}-I_{n}\right) \cdot|\varphi\rangle \\
& =H^{8 n}\left(\begin{array}{l}
\left.2\left|\varphi_{0}\right\rangle\left\langle\psi_{0}\right|-I_{n}\right)
\end{array} H^{\otimes n} \cdot|\varphi\rangle\right. \\
& =|0\rangle \otimes \ldots 810\rangle \text { (we fagot again state }|-\rangle)
\end{aligned}
$$

Exercise:
Build the gate $2\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|-I_{n}$
Hint: observe that

$$
\begin{aligned}
& \left(2\left|\psi_{0}\right\rangle\left\langle\psi_{0}\right|-I_{n}\right)|\varphi\rangle \\
& \quad= \begin{cases}|\varphi\rangle & \text { if }|\varphi\rangle=\left|\psi_{0}\right\rangle=|0\rangle \otimes \ldots \otimes|0\rangle \\
-|\varphi\rangle & \text { if }|\varphi\rangle \text { is any other basis element }\end{cases}
\end{aligned}
$$

Nov, haw to proceed from there on?

- With the successive application of U_{f} and R, the state eudues from

$$
\left|\psi_{1}\right\rangle=\cos \theta_{0}|p\rangle+\sin \theta_{0}|s\rangle \quad \text { angle }+\theta_{0}
$$ to

$$
\left|\psi_{2}\right\rangle=\cos \theta_{0}|P\rangle-\sin \theta_{0}|s\rangle \quad \text { angle }-\theta_{0}
$$

to

$$
\left|\psi_{3}\right\rangle=\cos \left(3 \theta_{0}\right)|P\rangle+\sin \left(3 \theta_{0}\right)|s\rangle \text { angle }+3 \theta_{0}
$$

Therefore, the successive application of Af and R corresponds to a rotation of angle $+2 \theta_{0}$, which brings the state closer to state $|s\rangle$, which is air aim. By iterating this operation an appropriate number of times, we can get arbitrarily close to $|s\rangle \rightarrow$ next week!

