%%%%%%%%%%%% Renewable Energy %%%%%%%%%%% %%%%%%%%%%%%% Solution 6 ex 6 %%%%%%%%%%%% close all; clear all; clc; % Rankine cycle K=273.15; % K to °C Atm=1.01325; % Atm to bar %%%%%%%%%%%%%%%%%%% ex.6 i) %%%%%%%%%%%%%%%%%%%%% % Point 1 T11=320; % unit in °C T1=T11-K; N=length(T1); P1=XSteam('Psat_T',T1); % unit in bar H1=XSteam('hL_T',T1); % unit in KJ/kg v1=XSteam('vL_T',T1); % unit in m3/kg % Point 2 T2=325-K; P2=70:10:250; N=length(P2); H2=zeros(1,N); for i=1:N H2(i)=H1+v1.*(P2(i)-P1).*100; % unit kJ/kg end % Point 3 T3=542; P3=P2; H3=zeros(1,N); S3=zeros(1,N); for i=1:N H3(i)=XSteam('h_pT',P3(i),T3); % unit kJ/kg S3(i)=XSteam('s_pT',P3(i),T3); % unit kJ/kg end H3_2=H3-H2; % Point 4 T4=T1; P4=P1; %w4=0.85:0.01:0.95; w4=0.925; %Steam quality %hL4=zeros(1,N); %hV4=zeros(1,N); %for i=1:N hL4=XSteam('hL_T',T4); hV4=XSteam('hV_T',T4); sL4=XSteam('sL_T',T4); sV4=XSteam('sV_T',T4); %end H4=hL4+w4.*(hV4-hL4); S4=sL4+w4.*(sV4-sL4); H4_3=H3-H4; dS=S4-S3; % Mass flow rate W_turbine=19.9*1000; % kW need for 25'000 households m_water=W_turbine./H4_3; % Thermal heat power Q=H3_2.*m_water./0.8; % in kW % Mass flow of molten salt cp=1.55; % heat capacity of molten salt kJ/kg/K T_hot=T3+23; % temperature of hot tank in °C T_cold=290; % temperature of cold tank in °C m_salt=Q./(cp.*(T_hot-T_cold)); % kg/s % Storage capacity of molten salt rho=1750; % density of molten salt kg/m3 D=23; % diameter of tanks H=14; % height of tanks V=(D/2)^2*pi()*H; % volume of tank in m3 t=V.*rho./m_salt./3600; % storage in hours % Plot figure(1); plot(P3,t,'color','k','LineWidth',2,'MarkerSize',12);hold on; set(gca,'Fontsize',12); xlabel('Turbine inlet pressure (bar)','Fontsize',14); ylabel('Storage capacity time (h)','Fontsize',14); fig1=figure(1); print(fig1,'Storage_i','-dpng'); % figure(2); % plot(T3,m_salt,'color','k','LineWidth',2,'MarkerSize',12);hold on; % set(gca,'Fontsize',12); % xlabel('Condenser outlet temperature (°C)','Fontsize',14); % ylabel('Molten salt mass flow (kg/s)','Fontsize',14); % fig2=figure(2); % print(fig2,'Salt_T3','-dpng'); %%%%%%%%%%%%%%%%%%% ex.6 ii) %%%%%%%%%%%%%%%%%%%%% % Point 1 T11=320; % unit in °C T1=T11-K; N=length(T1); P1=XSteam('Psat_T',T1); % unit in bar H1=XSteam('hL_T',T1); % unit in KJ/kg v1=XSteam('vL_T',T1); % unit in m3/kg % Point 2 T2=325-K; P2=100; H2=H1+v1.*(P2-P1).*100; % unit kJ/kg % Point 3 T3=400:10:750; N=length(T3); P3=P2; H3=zeros(1,N); S3=zeros(1,N); for i=1:N H3(i)=XSteam('h_pT',P3,T3(i)); % unit kJ/kg S3(i)=XSteam('s_pT',P3,T3(i)); % unit kJ/kg end H3_2=H3-H2; % Point 4 T4=T1; P4=P1; w4=0.925; %Steam quality hL4=XSteam('hL_T',T4); hV4=XSteam('hV_T',T4); sL4=XSteam('sL_T',T4); sV4=XSteam('sV_T',T4); H4=hL4+w4.*(hV4-hL4); S4=sL4+w4.*(sV4-sL4); H4_3=H3-H4; dS=S4-S3; % Mass flow rate W_turbine=19.9*1000; % kW need for 25'000 households m_water=W_turbine./H4_3; % Thermal heat power Q=H3_2.*m_water./0.8; % in kW % Mass flow of molten salt cp=1.55; % heat capacity of molten salt kJ/kg/K T_hot=T3+23; % temperature of hot tank in °C T_cold=290; % temperature of cold tank in °C m_salt=Q./(cp.*(T_hot-T_cold)); % kg/s % Storage capacity of molten salt rho=1750; % density of molten salt kg/m3 D=23; % diameter of tanks H=14; % height of tanks V=(D/2)^2*pi()*H; % volume of tank in m3 t=V.*rho./m_salt./3600; % storage in hours % Plot figure(2); plot(T3,t,'color','k','LineWidth',2,'MarkerSize',12);hold on; set(gca,'Fontsize',12); xlabel('Turbine inlet temperature (°C)','Fontsize',14); ylabel('Storage capacity time (h)','Fontsize',14); fig2=figure(2); print(fig2,'Storage_ii','-dpng'); %%%%%%%%%%%%%%%%%%% ex.6 iii) %%%%%%%%%%%%%%%%%%%%% % Point 1 T11=320; % unit in °C T1=T11-K; N=length(T1); P1=XSteam('Psat_T',T1); % unit in bar H1=XSteam('hL_T',T1); % unit in KJ/kg v1=XSteam('vL_T',T1); % unit in m3/kg % Point 2 T2=325-K; P2=100; H2=H1+v1.*(P2-P1).*100; % unit kJ/kg % Point 3 T3=542; P3=P2; H3=XSteam('h_pT',P3,T3); % unit kJ/kg S3=XSteam('s_pT',P3,T3); % unit kJ/kg H3_2=H3-H2; % Point 4 T4=T1; P4=P1; w4=0.85:0.01:0.95; %Steam quality N=length(w4); hL4=zeros(1,N); hV4=zeros(1,N); for i=1:N hL4=XSteam('hL_T',T4); hV4=XSteam('hV_T',T4); sL4=XSteam('sL_T',T4); sV4=XSteam('sV_T',T4); end H4=hL4+w4.*(hV4-hL4); S4=sL4+w4.*(sV4-sL4); H4_3=H3-H4; dS=S4-S3; % Mass flow rate W_turbine=19.9*1000; % kW need for 25'000 households m_water=W_turbine./H4_3; % Thermal heat power Q=H3_2.*m_water./0.8; % in kW % Mass flow of molten salt cp=1.55; % heat capacity of molten salt kJ/kg/K T_hot=T3+23; % temperature of hot tank in °C T_cold=290; % temperature of cold tank in °C m_salt=Q./(cp.*(T_hot-T_cold)); % kg/s % Storage capacity of molten salt rho=1750; % density of molten salt kg/m3 D=23; % diameter of tanks H=14; % height of tanks V=(D/2)^2*pi()*H; % volume of tank in m3 t=V.*rho./m_salt./3600; % storage in hours % Plot figure(3); plot(w4,t,'color','k','LineWidth',2,'MarkerSize',12);hold on; set(gca,'Fontsize',12); xlabel('Turbine outlet steam quality (-)','Fontsize',14); ylabel('Storage capacity time (h)','Fontsize',14); fig3=figure(3); print(fig3,'Storage_iii','-dpng'); %%%%%%%%%%%%%%%%%%% ex.6 iv) %%%%%%%%%%%%%%%%%%%%% % Point 1 T11=290:1:320; % unit in °C T1=T11-K; N=length(T1); P1=zeros(1,N); H1=zeros(1,N); v1=zeros(1,N); for i=1:N P1(i)=XSteam('Psat_T',T1(i)); % unit in bar H1(i)=XSteam('hL_T',T1(i)); % unit in KJ/kg v1(i)=XSteam('vL_T',T1(i)); % unit in m3/kg end % Point 2 T2=325-K; P2=100; H2=H1+v1.*(P2-P1).*100; % unit kJ/kg % Point 3 T3=542; P3=P2; H3=XSteam('h_pT',P3,T3); % unit kJ/kg S3=XSteam('s_pT',P3,T3); % unit kJ/kg H3_2=H3-H2; % Point 4 T4=T1; P4=P1; w4=0.925; %Steam quality hL4=zeros(1,N); hV4=zeros(1,N); for i=1:N hL4(i)=XSteam('hL_T',T4(i)); hV4(i)=XSteam('hV_T',T4(i)); sL4(i)=XSteam('sL_T',T4(i)); sV4(i)=XSteam('sV_T',T4(i)); end H4=hL4+w4.*(hV4-hL4); S4=sL4+w4.*(sV4-sL4); H4_3=H3-H4; dS=S4-S3; % Mass flow rate W_turbine=19.9*1000; % kW need for 25'000 households m_water=W_turbine./H4_3; % Thermal heat power Q=H3_2.*m_water./0.8; % in kW % Mass flow of molten salt cp=1.55; % heat capacity of molten salt kJ/kg/K T_hot=T3+23; % temperature of hot tank in °C T_cold=290; % temperature of cold tank in °C m_salt=Q./(cp.*(T_hot-T_cold)); % kg/s % Storage capacity of molten salt rho=1750; % density of molten salt kg/m3 D=23; % diameter of tanks H=14; % height of tanks V=(D/2)^2*pi()*H; % volume of tank in m3 t=V.*rho./m_salt./3600; % storage in hours % Plot figure(4); plot(T1,t,'color','k','LineWidth',2,'MarkerSize',12);hold on; set(gca,'Fontsize',12); xlabel('Condenser outlet temperature (°C)','Fontsize',14); ylabel('Storage capacity time (h)','Fontsize',14); fig4=figure(4); print(fig4,'Storage_iv','-dpng');