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Anneaux et Corps Exercices

Solutions 8

Exercice 1. (a) On mène la division euclidienne de f(x) par x− a1 pour obtenir un f1(x) ∈ A[x]
tel que

f(x) = (x− a1)f1(x) + a

pour a ∈ A. En évaluant en a1, on obtient que a = 0. Maintenant, on utilise de manière

cruciale que A est intègre pour voir que pour i ≥ 2 on a f1(ai) = 0. En e�et en évaluant en

ai on a

0 = (ai − a1)f1(ai),

et donc comme a1 ̸= ai et que A est intègre, on voit que f1(ai) = 0. Ainsi, on peut continuer

par récurence sur 2 ≤ i ≤ p+ 1 obtenir par le même procédé que

f(x) = (x− a1) · · · (x− an)g(x)

pour un g(x) ∈ A[x].

(b) Par le théorème des restes chinois

Z/pqZ = Z/pZ× Z/qZ.

Ainsi (1, 0), (0, 1), (0, 0) et (1, 1) sont des racines. Comme les polynômes en jeu sont moniques,

on peut voir avec le degré que le produit des (t− ai) ne peut diviser t
2 − t.

(c) As f |g in Q[t], there exists h ∈ Q[t] such that g(t) = f(t)h(t). Now, as h ∈ Q[t|, we can write

h(t) = c · h1(t), where h1(t) ∈ Z[t] is primitive and c ∈ Q. Then:

g(t) = c · f(t)h1(t).

By Lemma 3.8.9, we have that f(t)h1(t) is primitive and, since g(t) is also primitive, we use

Lemma 3.8.11 to determine that c ∈ Z×, i.e. c = ±1. Then

g(t) = ±f(t)h1(t) in Z[t], therefore f |g in Z[t].

(d) The roots of x4 + 1 over C are ei(
π
4
+ kπ

2
), where 0 ≤ k ≤ 3, and we have:

x4 + 1 =
3∏

k=0

(x− ei(
π
4
+ kπ

2
)).

We group the conjugate complex roots and obtain the decomposition over R[x]

x4 + 1 = (x2 −
√
2x+ 1)(x2 +

√
2x+ 1).

By Example 3.9.2 (4), it follows x4 + 1 does not admit roots in Q, as it does not admit

roots in R. If x4 + 1 = f(x)g(x), where f(x), g(x) ∈ Q[x] are polynomials of degree 2, then

f(x) = (x−a1)(x−a2) and g(x) = (x−a3)(x−a4), where a1, a2, a3, a4 ∈ {ei(
π
4
+ kπ

2
)| 0 ≤ k ≤ 3}

are distinct. One checks that for every choice of ai aj the polynomial (x − ai)(x − aj) does
not have coe�cients in Q. We conclude that x4 + 1 is irreducible in Q[x]. Lastly, we note

that, as it is primitive., by Lemma 3.8.13, it is also irreducible in Z[x].
In F2[x] we have x4 + [1]2 = (x+ [1]2)

4.



The squares in F11 are [0]11, [1]11, [3]11, [4]11, [5]11 and [9]11 and we deduce that x4+[1]11 does
not admit roots in F11. Assume that x4 + [1]11 admits a decomposition into a product of two

polynomials of degree 2. As F11 is a �eld, we can assume that these polynomials are unitary.

We have:

x4 + [1]11 = (x2 + ax+ b)(x2 + cx+ d) = x4 + (a+ c)x3 + (b+ ac+ d)x2 + (bc+ ad)x+ bd

and so d = b−1 and c = −a. We substitute and obtain:

x4 + [1]11 = x4 + (b− a2 + b−1)x2 + a(b−1 − b)x+ [1]11

and so a(b−1 − b) = 0.

� if a = 0, then b− a2 + b−1 = b+ b−1 = 0, which is impossible as [−1]11 is not a square

in F11.

� if b = b−1, then b2 = [1]11 and so b ∈ {[1]11, [10]11}.
� If b = [1]11, then b− a2 + b−1 = [2]11 − a2 = 0, which is impossible as [2]11 is not a

square in F11.

� If b = [10]11, then b− a2 + b−1 = [9]11 − a2 = 0 and so a ∈ {[3]11, [8]11}.

We conclude that

x4 + [1]11 = (x2 + [3]11 · x+ [10]11)(x
2 + [8]11 · x+ [10]11) in F11[x].

Since x8 − 1 = (x4 + 1)(x4 − 1) it su�ces to factor x4 − 1:

� in C[x] we have: x4 − 1 = (x+ i)(x− i)(x+ 1)(x− 1).

� in R[x], Q[x] and Z[x] we have: x4 − 1 = (x2 + 1)(x+ 1)(x− 1).

� in F2[x] we have: x
4 − [1]2 = x4 + [1]2 = (x+ [1]2)

4.

� in F11[x] we have: x4 − [1]11 = (x2 + [1]11)(x + [1]11)(x + [10]11), where we have seen

earlier that x2 + [1]11 is irreducible.

Exercice 2. (a) We write 2
9x

5 + 5
3x

4 + x3 + 1
3 = 1

9(2x
5 + 15x4 + 9x3 + 3) ∈ Q[x].

Now 1
9 ∈ Q[x]×, as 1

9 ∈ Q×. Therefore 2
9x

5 + 5
3x

4 + x3 + 1
3 is irreducible in Q[x] if and only if

2x5+15x4+9x3+3 is. As gcd(2, 15, 9, 3) = 1, we have that 2x5+15x4+9x3+3 is primitive,

hence it is irreducible in Q[x] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Using

Eisenstein for p = 3, where 3 ∈ Z is irreducible, we deduce that 2x5 + 15x4 + 9x3 + 3 is

irreducible in Z[x].

(b) Let f(x) = x4+[2]5 ∈ F5[x]. Note that for all a ∈ F5 we have a
2 ∈ {[0]5, [1]5, [4]5}. Therefore

f does not admit roots in F5. We will now show that f is not a product of two polynomials

of degree 2. As F5 is a �eld, we can assume that these polynomials are unitary and so assume

there exist a, b, c, d ∈ F5 such that

f(x) = x4+[2]5 = (x2+ax+b)(x2+cx+d) = x4+(a+c)x3+(b+ac+d)x2+(bc+ad)x+bd.

Then c = −a and d = [2]5b
−1 and substituting in the above gives:

x4 + [2]5 = x4 + (b− a2 + [2]5 · b−1)x2 + (−ab+ [2]5 · ab−1)x+ [2]5.

Thus −ab+ [2]5 · ab−1 = a(−b+ [2]5 · b−1) = 0 and

� if a = 0, then b2 = −[2]5, a contradiction.



� if −b+ [2]5b
−1 = 0, then b2 = [2]5, a contradiction.

We conclude that f is irreducible in F5[x].

Lastly, let x4+15x3+7 ∈ Q[x]. As the dominant coe�cient is 1, this polynomial is primitive,

hence it is irreducible in Q[x] if and only if it is irreducible in Z[x] (Lemma 3.8.13). Let

ϕ5 : Z → F5 be the quotient homomorphism and let π5 : Z[x] → F5[x] be its induced

homomorphism. We have that:

π5(x
4 + 15x3 + 7) = x4 + [2]5

and, as x4+[2]5 is irreducible in F5[x], we use Proposition 3.9.1 to conclude that x4+15x3+7
is irreducible in Z[x].

(c) First we note that x2+ y2+1 ∈ R[x, y] is primitive as its dominant coe�cient is 1. Secondly,
y2 + 1 ∈ R[y] is irreducible. We now apply Eisenstein with p = y2 + 1 to conclude that

x2 + y2 + 1 is irreducible in R[x, y].

(d) We have x2 + y2 + [1]2 = (x+ y + [1]2)
2 in F2[x, y].

(e) The evaluation homomorphism ev0 : Q[y] → Q, ev0(y) = 0, induces the homomorphism

ξ : Q[y][x] → Q[x] with ξ(y) = 0 and ξ(x) = x. We have that:

ξ(y4 + x3 + x2y2 + xy + 2x2 − x+ 1) = x3 + 2x2 − x+ 1

and, by Proposition 3.9.1, y4 + x3 + x2y2 + xy + 2x2 − x + 1 is irreducible in Q[x, y] if
x3+2x2−x+1 is irreducible in Q[x]. Now deg(x3+2x2−x+1) = 3 and thus x3+2x2−x+1
is irreducible in Q[x] if and only if it does not admit roots in Q. Assume p

r ∈ Q, where p, r ∈ Z
and gcd(p, r) = 1, is a root of x3 + 2x2 − x+ 1. Then(

p

r

)3

+ 2

(
p

r

)2

−
(
p

r

)
+ 1 = 0.

As gcd(p, r) = 1, it follows that p|1, r|1 and so p
r ∈ {−1, 1}. One checks that neither −1, nor

1 is a root of x3 + 2x2 − x+ 1 and thus x3 + 2x2 − x+ 1 is irreducible in Q[x].

(f) We have 4x3 + 120x2 + 8x − 12 = 4(x3 + 30x2 + 2x − 3) ∈ Q[x]. Now 4 ∈ Q[x]× and

so 4x3 + 120x2 + 8x − 12 is irreducible in Q[x] if and only if x3 + 30x2 + 2x − 3 is. As

deg(x3+30x2+2x−3) = 3 it follows that x3+30x2+2x−3 is irreducible in Q[x] if and only

if it does not admit roots in Q. Assume there exist p
r ∈ Q, where p, r ∈ Z and gcd(p, r) = 1,

such that: (
p

r

)3

+ 30

(
p

r

)2

+ 2

(
p

r

)
− 3 = 0.

As gcd(p, r) = 1, it follows that p|3 and r|1. Therefore p
r ∈ {−3,−1, 1, 3}. One checks that

none of the elements in {−3,−1, 1, 3} is a root of x3 + 30x2 + 2x − 3. We conclude that

x3 + 30x2 + 2x− 3 is irreducible in Q[x]. .

(g) As the polynomial t6+t3+1 is primitive, it follows that it is irreducible in Q[t] if and only if it

is irreducible in Z[x] (Lemma 3.8.13). We consider the quotient homomorphism ϕ2 : Z → F2

and its induced homomorphism π2 : Z[t] → F2[t] under which

π2(t
6 + t3 + 1) = t6 + t3 + [1]2.

By Proposition 3.9.1, t6 + t3 + 1 is irreducible in Z[t] if t6 + t3 + [1]2 is irreducible in F2[t].

Now, one checks that t6+t3+[1]2 does not admit roots in F2[t]. Secondly, the only irreducible
polynomial of degree 2 in F2[t] is t2 + t + [1]2 and one checks that this does not divide



t6 + t3 + [1]2. Lastly, we assume that t6 + t3 + [1]2 is a product of two polynomials of degree

3. As F2 is a �eld, we can assume that these polynomials are unitary and we have:

t6 + t3 + [1]2 = (t3 + a2t
2 + a1t+ a0)(t

3 + b2t
2 + b1t+ b0)

= t6 + (a2 + b2)t
5 + (a1 + a2b2 + b1)t

4 + (a0 + a1b2 + a2b1 + b0)t
3+

+ (a0b2 + a1b1 + a2b0)t
2 + (a0b1 + a1b0)t+ a0b0.

Then a0 = b0 = [1]2, a2 = b2 and
a0b1 + a1b0 = [0]2

a0b2 + a1b1 + a2b0 = [0]2

a0 + a1b2 + a2b1 + b0 = [1]2

a1 + a2b2 + b1 = [0]2

→


b1 + a1 = [0]2

a1b1 = [0]2

b2(a1 + b1) = [1]2

a2b2 = [0]2

→ [1]2 = [0]2.

We conclude that t6 + t3 + [1]2 is irreducible in F2[t].

(h) We �rst note that the ring Q[x] is factorial, as Q is (Theorem 3.8.1), and that x ∈ Q[x] is
irreducible. Secondly the polynomial y4 + xy3 + xy2 + x2y + 3x2 − 2x ∈ Q[x, y] is primitive,

as its dominant coe�cient is 1. We now apply Eisenstein with p = x to conclude that

y4 + xy3 + xy2 + x2y + 3x2 − 2x is irreducible in Q[x, y].

Exercice 3.

Let f(t) = t4 + 4t3 + 3t2 + 7t− 4 ∈ Z[t].

(a) We have π2(f(t)) = t4+ t2+ t = t(t3+ t+[1]2) ∈ F2[t]. Moreover, we remark that t3+ t+[1]2
is irreducible in F2[t], as it does not admit roots in F2.

(b) We have π3(f(t)) = t4 + t3 + t− [1]3 = (t2 + [1]3)(t
2 + t− [1]3) ∈ F3[t].

(c) Assume that f(t) is reducible in Z[t]. Then either f(t) = (t − a)g(t), where a ∈ Z and

g(t) ∈ Z[t] is a polynomial of degree 3, or f(t) = f1(t)f2(t), where f1(t), f2(t) ∈ Z[t] are two
polynomials of degree 2.

In the �rst case, a|4 but none of the elements of {±1,±2,±4} are roots of f . Hence, we only
need to consider the case when f(t) = f1(t)f2(t), where deg(f1(t)) = deg(f2(t)) = 2, and we

have:

π2(f(t)) = π2(f1(t)f2(t)) = π2(f1(t))π2(f2(t).

Now, as deg(π2(f(t))) = 4 and as deg(π2(f1(t))) = deg(π2(f2(t))) ≤ 2, it follows that

deg(π2(f1(t))) = 2 and deg(π2(f2(t))) = 2.

On the other hand, we have π2(f(t)) = t4+t2+t = t(t3+t+[1]2), where t
3+t+[1]2 ∈ F2[t] is

irreducible. We have arrived at a contradiction. We conclude that f(t) ∈ Z[t] is irreducible.


