Exercice 1. (a) On mène la division euclidienne de f(x) par $x - a_1$ pour obtenir un $f_1(x) \in A[x]$ tel que

$$f(x) = (x - a_1)f_1(x) + a$$

pour $a \in A$. En évaluant en a_1 , on obtient que a = 0. Maintenant, on utilise de manière cruciale que A est intègre pour voir que pour $i \ge 2$ on a $f_1(a_i) = 0$. En effet en évaluant en a_i on a

$$0 = (a_i - a_1)f_1(a_i),$$

et donc comme $a_1 \neq a_i$ et que A est intègre, on voit que $f_1(a_i) = 0$. Ainsi, on peut continuer par récurence sur $2 \leq i \leq p+1$ obtenir par le même procédé que

$$f(x) = (x - a_1) \cdots (x - a_n)g(x)$$

pour un $g(x) \in A[x]$.

(b) Par le théorème des restes chinois

$$\mathbb{Z}/pq\mathbb{Z} = \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/q\mathbb{Z}.$$

Ainsi (1,0), (0,1), (0,0) et (1,1) sont des racines. Comme les polynômes en jeu sont moniques, on peut voir avec le degré que le produit des $(t - a_i)$ ne peut diviser $t^2 - t$.

(c) As f|g in $\mathbb{Q}[t]$, there exists $h \in \mathbb{Q}[t]$ such that g(t) = f(t)h(t). Now, as $h \in \mathbb{Q}[t]$, we can write $h(t) = c \cdot h_1(t)$, where $h_1(t) \in \mathbb{Z}[t]$ is primitive and $c \in \mathbb{Q}$. Then:

$$g(t) = c \cdot f(t)h_1(t).$$

By Lemma 3.8.9, we have that $f(t)h_1(t)$ is primitive and, since g(t) is also primitive, we use Lemma 3.8.11 to determine that $c \in \mathbb{Z}^{\times}$, i.e. $c = \pm 1$. Then

$$g(t) = \pm f(t)h_1(t)$$
 in $\mathbb{Z}[t]$, therefore $f|g$ in $\mathbb{Z}[t]$.

(d) The roots of $x^4 + 1$ over \mathbb{C} are $e^{i(\frac{\pi}{4} + \frac{k\pi}{2})}$, where $0 \le k \le 3$, and we have:

$$x^{4} + 1 = \prod_{k=0}^{3} (x - e^{i(\frac{\pi}{4} + \frac{k\pi}{2})}).$$

We group the conjugate complex roots and obtain the decomposition over $\mathbb{R}[x]$

$$x^{4} + 1 = (x^{2} - \sqrt{2}x + 1)(x^{2} + \sqrt{2}x + 1).$$

By Example 3.9.2 (4), it follows $x^4 + 1$ does not admit roots in \mathbb{Q} , as it does not admit roots in \mathbb{R} . If $x^4 + 1 = f(x)g(x)$, where $f(x), g(x) \in \mathbb{Q}[x]$ are polynomials of degree 2, then $f(x) = (x-a_1)(x-a_2)$ and $g(x) = (x-a_3)(x-a_4)$, where $a_1, a_2, a_3, a_4 \in \{e^{i(\frac{\pi}{4} + \frac{k\pi}{2})} | 0 \le k \le 3\}$ are distinct. One checks that for every choice of $a_i a_j$ the polynomial $(x - a_i)(x - a_j)$ does not have coefficients in \mathbb{Q} . We conclude that $x^4 + 1$ is irreducible in $\mathbb{Q}[x]$. Lastly, we note that, as it is primitive., by Lemma 3.8.13, it is also irreducible in $\mathbb{Z}[x]$.

In $\mathbb{F}_2[x]$ we have $x^4 + [1]_2 = (x + [1]_2)^4$.

The squares in \mathbb{F}_{11} are $[0]_{11}, [1]_{11}, [3]_{11}, [4]_{11}, [5]_{11}$ and $[9]_{11}$ and we deduce that $x^4 + [1]_{11}$ does not admit roots in \mathbb{F}_{11} . Assume that $x^4 + [1]_{11}$ admits a decomposition into a product of two polynomials of degree 2. As \mathbb{F}_{11} is a field, we can assume that these polynomials are unitary. We have:

$$x^{4} + [1]_{11} = (x^{2} + ax + b)(x^{2} + cx + d) = x^{4} + (a + c)x^{3} + (b + ac + d)x^{2} + (bc + ad)x + bd$$

and so $d = b^{-1}$ and c = -a. We substitute and obtain:

$$x^{4} + [1]_{11} = x^{4} + (b - a^{2} + b^{-1})x^{2} + a(b^{-1} - b)x + [1]_{11}$$

and so $a(b^{-1} - b) = 0$.

- if a = 0, then $b a^2 + b^{-1} = b + b^{-1} = 0$, which is impossible as $[-1]_{11}$ is not a square in \mathbb{F}_{11} .
- if $b = b^{-1}$, then $b^2 = [1]_{11}$ and so $b \in \{[1]_{11}, [10]_{11}\}$.
 - If $b = [1]_{11}$, then $b a^2 + b^{-1} = [2]_{11} a^2 = 0$, which is impossible as $[2]_{11}$ is not a square in \mathbb{F}_{11} .
 - If $b = [10]_{11}$, then $b a^2 + b^{-1} = [9]_{11} a^2 = 0$ and so $a \in \{[3]_{11}, [8]_{11}\}$.

We conclude that

$$x^{4} + [1]_{11} = (x^{2} + [3]_{11} \cdot x + [10]_{11})(x^{2} + [8]_{11} \cdot x + [10]_{11})$$
 in $\mathbb{F}_{11}[x]$.

Since $x^8 - 1 = (x^4 + 1)(x^4 - 1)$ it suffices to factor $x^4 - 1$:

- in $\mathbb{C}[x]$ we have: $x^4 1 = (x+i)(x-i)(x+1)(x-1)$.
- in $\mathbb{R}[x]$, $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$ we have: $x^4 1 = (x^2 + 1)(x + 1)(x 1)$.
- in $\mathbb{F}_2[x]$ we have: $x^4 [1]_2 = x^4 + [1]_2 = (x + [1]_2)^4$.
- in $\mathbb{F}_{11}[x]$ we have: $x^4 [1]_{11} = (x^2 + [1]_{11})(x + [1]_{11})(x + [10]_{11})$, where we have seen earlier that $x^2 + [1]_{11}$ is irreducible.

Exercice 2. (a) We write $\frac{2}{9}x^5 + \frac{5}{3}x^4 + x^3 + \frac{1}{3} = \frac{1}{9}(2x^5 + 15x^4 + 9x^3 + 3) \in \mathbb{Q}[x]$. Now $\frac{1}{9} \in \mathbb{Q}[x]^{\times}$, as $\frac{1}{9} \in \mathbb{Q}^{\times}$. Therefore $\frac{2}{9}x^5 + \frac{5}{3}x^4 + x^3 + \frac{1}{3}$ is irreducible in $\mathbb{Q}[x]$ if and only if $2x^5 + 15x^4 + 9x^3 + 3$ is. As gcd(2, 15, 9, 3) = 1, we have that $2x^5 + 15x^4 + 9x^3 + 3$ is primitive, hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). Using Eisenstein for p = 3, where $3 \in \mathbb{Z}$ is irreducible, we deduce that $2x^5 + 15x^4 + 9x^3 + 3$ is irreducible in $\mathbb{Z}[x]$.

(b) Let $f(x) = x^4 + [2]_5 \in \mathbb{F}_5[x]$. Note that for all $a \in \mathbb{F}_5$ we have $a^2 \in \{[0]_5, [1]_5, [4]_5\}$. Therefore f does not admit roots in \mathbb{F}_5 . We will now show that f is not a product of two polynomials of degree 2. As \mathbb{F}_5 is a field, we can assume that these polynomials are unitary and so assume there exist $a, b, c, d \in \mathbb{F}_5$ such that

$$f(x) = x^4 + [2]_5 = (x^2 + ax + b)(x^2 + cx + d) = x^4 + (a + c)x^3 + (b + ac + d)x^2 + (bc + ad)x + bd.$$

Then c = -a and $d = [2]_5 b^{-1}$ and substituting in the above gives:

$$x^{4} + [2]_{5} = x^{4} + (b - a^{2} + [2]_{5} \cdot b^{-1})x^{2} + (-ab + [2]_{5} \cdot ab^{-1})x + [2]_{5}.$$

Thus $-ab + [2]_5 \cdot ab^{-1} = a(-b + [2]_5 \cdot b^{-1}) = 0$ and

• if a = 0, then $b^2 = -[2]_5$, a contradiction.

• if $-b + [2]_5 b^{-1} = 0$, then $b^2 = [2]_5$, a contradiction.

We conclude that f is irreducible in $\mathbb{F}_5[x]$.

Lastly, let $x^4 + 15x^3 + 7 \in \mathbb{Q}[x]$. As the dominant coefficient is 1, this polynomial is primitive, hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). Let $\phi_5 : \mathbb{Z} \to \mathbb{F}_5$ be the quotient homomorphism and let $\pi_5 : \mathbb{Z}[x] \to \mathbb{F}_5[x]$ be its induced homomorphism. We have that:

$$\pi_5(x^4 + 15x^3 + 7) = x^4 + [2]_5$$

and, as $x^4 + [2]_5$ is irreducible in $\mathbb{F}_5[x]$, we use Proposition 3.9.1 to conclude that $x^4 + 15x^3 + 7$ is irreducible in $\mathbb{Z}[x]$.

- (c) First we note that $x^2 + y^2 + 1 \in \mathbb{R}[x, y]$ is primitive as its dominant coefficient is 1. Secondly, $y^2 + 1 \in \mathbb{R}[y]$ is irreducible. We now apply Eisenstein with $p = y^2 + 1$ to conclude that $x^2 + y^2 + 1$ is irreducible in $\mathbb{R}[x, y]$.
- (d) We have $x^2 + y^2 + [1]_2 = (x + y + [1]_2)^2$ in $\mathbb{F}_2[x, y]$.
- (e) The evaluation homomorphism $\operatorname{ev}_0 : \mathbb{Q}[y] \to \mathbb{Q}$, $\operatorname{ev}_0(y) = 0$, induces the homomorphism $\xi : \mathbb{Q}[y][x] \to \mathbb{Q}[x]$ with $\xi(y) = 0$ and $\xi(x) = x$. We have that:

$$\xi(y^4 + x^3 + x^2y^2 + xy + 2x^2 - x + 1) = x^3 + 2x^2 - x + 1$$

and, by Proposition 3.9.1, $y^4 + x^3 + x^2y^2 + xy + 2x^2 - x + 1$ is irreducible in $\mathbb{Q}[x, y]$ if $x^3 + 2x^2 - x + 1$ is irreducible in $\mathbb{Q}[x]$. Now $\deg(x^3 + 2x^2 - x + 1) = 3$ and thus $x^3 + 2x^2 - x + 1$ is irreducible in $\mathbb{Q}[x]$ if and only if it does not admit roots in \mathbb{Q} . Assume $\frac{p}{r} \in \mathbb{Q}$, where $p, r \in \mathbb{Z}$ and $\gcd(p, r) = 1$, is a root of $x^3 + 2x^2 - x + 1$. Then

$$\left(\frac{p}{r}\right)^3 + 2\left(\frac{p}{r}\right)^2 - \left(\frac{p}{r}\right) + 1 = 0$$

As gcd(p,r) = 1, it follows that p|1, r|1 and so $\frac{p}{r} \in \{-1, 1\}$. One checks that neither -1, nor 1 is a root of $x^3 + 2x^2 - x + 1$ and thus $x^3 + 2x^2 - x + 1$ is irreducible in $\mathbb{Q}[x]$.

(f) We have $4x^3 + 120x^2 + 8x - 12 = 4(x^3 + 30x^2 + 2x - 3) \in \mathbb{Q}[x]$. Now $4 \in \mathbb{Q}[x]^{\times}$ and so $4x^3 + 120x^2 + 8x - 12$ is irreducible in $\mathbb{Q}[x]$ if and only if $x^3 + 30x^2 + 2x - 3$ is. As $\deg(x^3 + 30x^2 + 2x - 3) = 3$ it follows that $x^3 + 30x^2 + 2x - 3$ is irreducible in $\mathbb{Q}[x]$ if and only if it does not admit roots in \mathbb{Q} . Assume there exist $\frac{p}{r} \in \mathbb{Q}$, where $p, r \in \mathbb{Z}$ and $\gcd(p, r) = 1$, such that:

$$\left(\frac{p}{r}\right)^3 + 30\left(\frac{p}{r}\right)^2 + 2\left(\frac{p}{r}\right) - 3 = 0.$$

As gcd(p,r) = 1, it follows that p|3 and r|1. Therefore $\frac{p}{r} \in \{-3, -1, 1, 3\}$. One checks that none of the elements in $\{-3, -1, 1, 3\}$ is a root of $x^3 + 30x^2 + 2x - 3$. We conclude that $x^3 + 30x^2 + 2x - 3$ is irreducible in $\mathbb{Q}[x]$.

(g) As the polynomial $t^6 + t^3 + 1$ is primitive, it follows that it is irreducible in $\mathbb{Q}[t]$ if and only if it is irreducible in $\mathbb{Z}[x]$ (Lemma 3.8.13). We consider the quotient homomorphism $\phi_2 : \mathbb{Z} \to \mathbb{F}_2$ and its induced homomorphism $\pi_2 : \mathbb{Z}[t] \to \mathbb{F}_2[t]$ under which

$$\pi_2(t^6 + t^3 + 1) = t^6 + t^3 + [1]_2.$$

By Proposition 3.9.1, $t^6 + t^3 + 1$ is irreducible in $\mathbb{Z}[t]$ if $t^6 + t^3 + [1]_2$ is irreducible in $\mathbb{F}_2[t]$.

Now, one checks that $t^6 + t^3 + [1]_2$ does not admit roots in $\mathbb{F}_2[t]$. Secondly, the only irreducible polynomial of degree 2 in $\mathbb{F}_2[t]$ is $t^2 + t + [1]_2$ and one checks that this does not divide

 $t^6 + t^3 + [1]_2$. Lastly, we assume that $t^6 + t^3 + [1]_2$ is a product of two polynomials of degree 3. As \mathbb{F}_2 is a field, we can assume that these polynomials are unitary and we have:

$$t^{6} + t^{3} + [1]_{2} = (t^{3} + a_{2}t^{2} + a_{1}t + a_{0})(t^{3} + b_{2}t^{2} + b_{1}t + b_{0})$$

= $t^{6} + (a_{2} + b_{2})t^{5} + (a_{1} + a_{2}b_{2} + b_{1})t^{4} + (a_{0} + a_{1}b_{2} + a_{2}b_{1} + b_{0})t^{3} + (a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0})t^{2} + (a_{0}b_{1} + a_{1}b_{0})t + a_{0}b_{0}.$

Then $a_0 = b_0 = [1]_2$, $a_2 = b_2$ and

$$\begin{cases} a_0b_1 + a_1b_0 = [0]_2 \\ a_0b_2 + a_1b_1 + a_2b_0 = [0]_2 \\ a_0 + a_1b_2 + a_2b_1 + b_0 = [1]_2 \\ a_1 + a_2b_2 + b_1 = [0]_2 \end{cases} \rightarrow \begin{cases} b_1 + a_1 = [0]_2 \\ a_1b_1 = [0]_2 \\ b_2(a_1 + b_1) = [1]_2 \\ a_2b_2 = [0]_2 \end{cases} \rightarrow [1]_2 = [0]_2.$$

We conclude that $t^6 + t^3 + [1]_2$ is irreducible in $\mathbb{F}_2[t]$.

(h) We first note that the ring $\mathbb{Q}[x]$ is factorial, as \mathbb{Q} is (Theorem 3.8.1), and that $x \in \mathbb{Q}[x]$ is irreducible. Secondly the polynomial $y^4 + xy^3 + xy^2 + x^2y + 3x^2 - 2x \in \mathbb{Q}[x, y]$ is primitive, as its dominant coefficient is 1. We now apply Eisenstein with p = x to conclude that $y^4 + xy^3 + xy^2 + x^2y + 3x^2 - 2x$ is irreducible in $\mathbb{Q}[x, y]$.

Exercise 3. Let $f(t) = t^4 + 4t^3 + 3t^2 + 7t - 4 \in \mathbb{Z}[t]$.

- (a) We have $\pi_2(f(t)) = t^4 + t^2 + t = t(t^3 + t + [1]_2) \in \mathbb{F}_2[t]$. Moreover, we remark that $t^3 + t + [1]_2$ is irreducible in $\mathbb{F}_2[t]$, as it does not admit roots in \mathbb{F}_2 .
- (b) We have $\pi_3(f(t)) = t^4 + t^3 + t [1]_3 = (t^2 + [1]_3)(t^2 + t [1]_3) \in \mathbb{F}_3[t].$
- (c) Assume that f(t) is reducible in $\mathbb{Z}[t]$. Then either f(t) = (t-a)g(t), where $a \in \mathbb{Z}$ and $g(t) \in \mathbb{Z}[t]$ is a polynomial of degree 3, or $f(t) = f_1(t)f_2(t)$, where $f_1(t), f_2(t) \in \mathbb{Z}[t]$ are two polynomials of degree 2.

In the first case, a|4 but none of the elements of $\{\pm 1, \pm 2, \pm 4\}$ are roots of f. Hence, we only need to consider the case when $f(t) = f_1(t)f_2(t)$, where $\deg(f_1(t)) = \deg(f_2(t)) = 2$, and we have:

$$\pi_2(f(t)) = \pi_2(f_1(t)f_2(t)) = \pi_2(f_1(t))\pi_2(f_2(t))$$

Now, as $\deg(\pi_2(f(t))) = 4$ and as $\deg(\pi_2(f_1(t))) = \deg(\pi_2(f_2(t))) \leq 2$, it follows that $\deg(\pi_2(f_1(t))) = 2$ and $\deg(\pi_2(f_2(t))) = 2$.

On the other hand, we have $\pi_2(f(t)) = t^4 + t^2 + t = t(t^3 + t + [1]_2)$, where $t^3 + t + [1]_2 \in \mathbb{F}_2[t]$ is irreducible. We have arrived at a contradiction. We conclude that $f(t) \in \mathbb{Z}[t]$ is irreducible.