Quantum computation: lecture 8 As a reminder, we were considering the following circuit for Sher's algorithm:

Remember also that we are looking for the period r of $f:\{0 . . M-1\} \rightarrow\{0 . . M-1\}$ defined as $f(x)=a^{x} \bmod N$

For now, we assume that $M=2^{m}$ for same $m \geqslant 1$ and also that $M=k \cdot r$ for same $k \geqslant 1$ (node that these two assumptions contradict themselves but the plan is to remove the second one later)

So far, we have computed

$$
\begin{aligned}
& \left.\left|\varphi_{2}\right\rangle=\frac{1}{\sqrt{M}} \sum_{x_{0}=0}^{r-1} \sum_{j=0}^{\frac{M}{r}-1}\left|x_{0}+j r\right\rangle \otimes \right\rvert\, \underbrace{\left.f\left(x_{0}+j r\right)\right\rangle}_{=f\left(x_{0}\right)} \\
& \text { and recall that }
\end{aligned}
$$

$$
\text { QFT }|x\rangle=\frac{1}{\sqrt{7}} \sum_{y=0}^{M-1} \exp \left(\frac{2 \pi i x y}{M}\right)|y\rangle
$$

From there, let us proceed to compute

$$
\left|\psi_{3}\right\rangle=\left(Q F T \otimes I^{\otimes m}\right)\left|\psi_{2}\right\rangle
$$

$$
\begin{aligned}
& \left|\varphi_{3}\right\rangle=\frac{1}{\sqrt{M}} \sum_{x_{0}=0}^{n-1} \sum_{j=0}^{\frac{M}{r}-1} \text { QFT }\left|x_{0}+j r\right\rangle \otimes\left|f\left(x_{0}\right)\right\rangle \\
& =\frac{1}{M} \sum_{x_{0}=0}^{\Gamma-1} \sum_{j=0}^{\Gamma-1} \sum_{y=0}^{M-1} \exp \left(\frac{2 \pi i\left(x_{0}+j r\right) y}{M}\right)|y\rangle \otimes\left|f\left(x_{0}\right)\right\rangle
\end{aligned}
$$

Inge that an extra factor $1 / \sqrt{11}$ appears here

$$
\begin{aligned}
&=\frac{1}{M} \sum_{x_{0}=0}^{r-1} \sum_{y=0}^{M-1} e^{\frac{2 \pi i x_{0} y}{M}}(\underbrace{\left.\sum_{j=0}^{\frac{\pi}{r}-1} e^{\frac{2 \pi i j r y}{M}}\right)|y\rangle \otimes\left|f\left(x_{0}\right)\right\rangle} \\
&=\left\{\begin{array}{cc}
M / r & \text { if } y \text { is a multiple of } \frac{\pi}{r} \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

So the sum over $y \in\{0 . . M-1\}$ can be rewritten as a sum over $k \in\{0 \ldots r-1\}$ with $y=k \cdot \frac{M}{r}$:

$$
\left|\psi_{3}\right\rangle=\frac{1}{\Gamma} \cdot \frac{M}{r} \sum_{x_{0}=0}^{r-1} \sum_{k=0}^{r-1} e^{\frac{2 \pi i x_{0} k}{r}}\left|k \cdot \frac{\pi}{r}\right\rangle \otimes\left|f\left(x_{0}\right)\right\rangle
$$

Measurement: Measuring the first m quits in the computational basis, the output state is

$$
\left|\psi_{h}\right\rangle=\frac{P_{y_{0}}\left|\psi_{3}\right\rangle}{\| P_{y_{0}}\left|\psi_{z}\right\rangle \|} \text { where } P_{y_{0}}=\left|y_{0}\right\rangle\left\langle y_{0}\right| \otimes I_{m}
$$

with probability

$$
\begin{aligned}
& P\left(y_{0}\right)=\left\langle\psi_{3}\right| P_{y_{0}}\left|\psi_{3}\right\rangle \\
& \left.=\left(\frac{1}{r} \sum_{x_{0}, k=0}^{r-1} e^{-2 \pi i x_{0} k / r}<k \frac{M}{r}\left|\otimes<f\left(x_{0}\right)\right|\right) \cdot\left(\mid y_{0}\right)\left\langle y_{0}\right| \theta I_{m}\right) \\
& \cdot\left(\frac{1}{r} \sum_{x_{0}, k_{0}^{\prime}=0}^{n_{-1}} e^{2 \pi x_{0}^{\prime} k^{\prime} / r}\left|k^{\prime \prime} \frac{\pi}{r}\right\rangle \otimes\left|f\left(x_{0}^{\prime}\right)\right\rangle\right. \\
& =\frac{1}{r^{2}} \sum_{x_{0}, k_{1}, x_{0}^{\prime}, k^{\prime}=0}^{r-1} e^{2 \pi i\left(x_{0}^{\prime} k^{\prime}-x_{0} k\right) r}\left\langle\frac{=\delta_{k, r}, y_{0} \cdot \delta_{k}, \eta_{0} y_{0}}{\left\langle k \frac{\Pi}{r}\left(y_{0}\right)\left\langle y_{0} \left\lvert\, k \frac{\pi}{r}\right.\right\rangle\right.}\right. \\
& \text { reenter that } f \text { differs across } 0 \leqslant x_{0} \leqslant \cdots-1 \longrightarrow \frac{<f\left(x_{0}\right) \mid f\left(x_{x_{i}}\right)}{=\delta_{x_{0}} x_{i}}
\end{aligned}
$$

So finally

$$
P\left(y_{0}\right)= \begin{cases}\frac{1}{r^{2}} \sum_{x_{0}=0}^{r-1} 1=\frac{1}{r} & \text { if } y_{0} \text { is a multiple of } \frac{\pi}{r} \\ 0 & \text { otherwise }\end{cases}
$$ ie. the circuit outputs $y_{0}=k \cdot \frac{M}{r} \quad 0 \leqslant k \leqslant r-1$ with uniform probability. Let us see what we can deduce from this...

- If $\operatorname{gcd}(k, r)=1$, then simplifying the fraction $\frac{y_{0}}{M}=\frac{k}{r}$, we obtain the value of r by looking at the final de nominator.
- If $\operatorname{gcd}(k, r) \neq 1$, this procedure fails.

In practice, we do not know whether $\operatorname{gcd}(k, r)=1$ or not, but we can still simplify the fraction and test whether the denaminator is a period of f. resulting

As $0 \leq k \leq r-1$ is uniform, the success probability of this procedure is therefore given by

$$
\mathbb{P}(\operatorname{gcd}(k, r)=1)=\frac{\varphi(r)}{r}
$$

where $\varphi(r)=\#\{0 \leq k \leq r-1: \operatorname{gcd}(k, r)=1\}$
the Euler function
It can be shawn that $\varphi(r) \geqslant \frac{r}{4 \ln (\ln r)}$,
so $\mathbb{P}($ success $) \geqslant \frac{1}{4 \ln (\ln r)}$

As $r \leq M$, this further implies (for one measwemat):

$$
\mathbb{P}(\text { success }) \geqslant \frac{1}{4 \ln (\ln M)}
$$

Therefore, $\mathbb{P}($ failure $) \leq \varepsilon$ after T trials if $T \geqslant 4 \ln (\ln T) \cdot \| \ln \varepsilon l$ (same reasaing as for Simon's algorithm).
And nav for the real thing...

First of all, let us see what happens when we remove the unnatural assumption that M is a multiple of r (but it still holds that $M=2^{\text {m }}$ for same $m \geq 1$).

In this case, define for $0 \leq x_{0} \leq r-1$:

$$
A\left(x_{0}\right)=\operatorname{lnf}\left\{j \geqslant 1: x_{0}+j r>\Pi-1\right\}
$$

$\binom{$ Note that when M is a multiple of $r}{$, then $A\left(x_{0}\right)=\frac{M}{r} \quad \forall 0 \leq x_{0} \leq r-1}$

- So in this general case, state $\left|\psi_{2}\right\rangle$ is given by

$$
\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{M}} \sum_{x_{0}=0}^{r-1} \sum_{j=0}^{A\left(x_{0}\right) \cdot 1}\left|x_{0}+j r\right\rangle \otimes\left|f\left(x_{0}\right)\right\rangle
$$

- Likenise, $\left|\psi_{3}\right\rangle$ is given by

$$
\begin{aligned}
\left|\psi_{3}\right\rangle=\frac{1}{M} \sum_{x_{0}=0}^{r-1} \sum_{y=0}^{M-1} e^{\frac{2 \pi i x_{0} y}{M}}(& (\underbrace{\left.\sum_{j=0}^{A\left(x_{0}\right)-1} e^{\frac{2 x i j r y}{M}}\right)|y\rangle \otimes\left|f\left(x_{0}\right)\right\rangle}_{\text {but this term now is not }} \\
& \text { anymore either } \frac{M}{r} \text { or } 0 \ldots
\end{aligned}
$$

- After the measurement, the act put state is $\left|y_{0}\right\rangle$ with probability

$$
\begin{aligned}
& P\left(y_{0}\right)=\left\langle\psi_{3}\right|\left(\left|y_{0}\right\rangle\left\langle y_{0}\right| \otimes I_{m}\right)\left|\psi_{3}\right\rangle \\
& =\frac{1}{M} \sum_{x_{0}=0}^{r-1} \sum_{y=0}^{n-1} e^{-\frac{2 \pi i x_{y} y}{n}}\left(\sum_{j=0}^{\frac{A(x)-1}{}} e^{-\frac{2 \pi i j}{n} j_{1}}\right) \\
& \cdot \frac{1}{\pi} \sum_{x_{0}^{\prime}=0}^{n-1} \sum_{y^{\prime}=0}^{n-1} e^{+\frac{2 \pi^{\prime} x^{\prime} x_{0}^{\prime} y^{\prime}}{M}}\left(\sum_{j^{\prime}=0}^{n\left(x_{0}\right)-1} e^{\frac{2 \pi i}{n} j^{\prime} y^{\prime} \prime^{\prime}}\right) \\
& \cdot\left\langle y \mid y_{0}\right\rangle\left\langle y_{0} \mid y^{\prime}\right\rangle \cdot\left\langle f\left(x_{0}\right) \mid f\left(x_{0}^{\prime}\right)\right\rangle\left(\begin{array}{c}
=\delta_{y y_{0}} \\
-\delta_{y_{y} y_{0}} \\
. \\
\delta_{x_{0}}
\end{array}\right)
\end{aligned}
$$

which gives after simplification

$$
P\left(y_{0}\right)=\frac{1}{\Pi^{2}} \cdot \sum_{x_{0}=0}^{r-1} \left\lvert\, \sum_{i=0}^{A\left(x_{0}\right)-1} e^{\left.\frac{2 u i j y_{0}}{\Gamma / r}\right|^{2}}\right.
$$

As seen above:
when $M=k \cdot r$, this expression simplifies to

In the general case, the picture is as follows:

Lemma (without proof)
 Let $I=\bigcup_{k=0}^{n} I_{k}$ with $I_{k}=\left[k \cdot \frac{M}{r}-\frac{1}{2}, k \cdot \frac{M}{r}+\frac{1}{2}\right]$ Then $\mathbb{P}\left(y_{0} \in I\right) \geqslant \frac{2}{5}$
(note $\left|I_{k}\right|=1 \quad \forall k$)

Last steps left for next week:

- Conclusion of the algorithm (hov to find r from the observation of y_{0})
- Carstruction of the QFT circuit
- Construction of the cade U_{f} circuit for $f(x)=a^{x}(\bmod N)$

Side note: simple and elegant proof that the Euler totient function satisfies $\varphi(\pi) \geq \frac{\pi}{4 \ln (\pi)}$

Let $M=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$ be the decomposition of M
Then $\varphi(M)=\#\{1 \leq a \leq M: \operatorname{gcd}(a, M)=1\}$

$$
=p_{1}^{a_{1}-1}\left(p_{1}-1\right) \cdots p_{k}^{a_{k}-1}\left(p_{k}-1\right)
$$

Ex: If $\Pi=p \cdot q$, then $\varphi(M)=(p-1)(q-1)$
If $M=p^{k}$, then $\varphi(M)=p^{k-1}(p-1)$

$$
\begin{aligned}
& \text { So } \frac{\varphi(M)}{M}=\frac{p_{1}^{a_{1}-1}\left(p_{1}-1\right) \cdots p_{k}^{a_{k}-1}\left(p_{k-1}\right)}{p_{1}^{a_{1}} \cdots \cdot p_{k}^{a_{k}}} \\
& =\prod_{j=1}^{k}\left(1-\frac{1}{P_{j}}\right)=\frac{k}{\prod_{j=1}^{n}}\left(1-\frac{1}{P_{i}^{2}}\right) / \prod_{j=1}^{k}\left(1+\frac{1}{P_{j}}\right) \\
& \geqslant \frac{\frac{M}{\prod_{i=2}}\left(1-\frac{1}{i^{2}}\right)}{\prod_{i=1}^{k}\left(1+\frac{1}{P_{j}}\right)} \geqslant \frac{\frac{m}{\prod_{i=2} \frac{(i-1)(i+1)}{i^{2}}}}{1+\sum_{i=2}^{m} \frac{1}{i} \leftarrow\binom{\text { expand the }}{\text { product }}} \\
& \geqslant \frac{\frac{1 \cdot 5}{2^{2}} \frac{2 \cdot 4}{8^{2}} \cdot \frac{5 \cdot 5}{5^{2}} \cdot \frac{6 \cdot 6}{5^{2}} \cdot \frac{5 \cdot 7}{6^{2}} \cdots}{1+\ln (\pi)} \geqslant \frac{1}{4 \ln (\pi) \quad \#} \quad \#
\end{aligned}
$$

