Advanced Probability and Applications

EPFL - Spring Semester 2023-2024

Midterm exam: solutions

Please pay attention to the presentation of your answers! (2 points)

Advanced Probability and Applications EPFL - Spring Semester 2023-2024

Midterm exam

Please pay attention to the presentation of your answers! (2 points)

Exercise 1. Quiz. (15 points) Answer each yes/no question below (1 pt) and provide a short justification (proof or counter-example) for your answer (2 pts).

a) Let $\mathcal{B}(\mathbb{R})$ be the Borel σ -field on \mathbb{R} . Recall that \mathbb{Q} denotes the set of all rational numbers. Is $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$?

Answer: Yes. Every singleton $\{x\}, x \in \mathbb{R}$ belongs to $\mathcal{B}(\mathbb{R})$. Also, since $\mathcal{B}(\mathbb{R})$ is a σ -field, every countable union of sets in $\mathcal{B}(\mathbb{R})$ also belongs to $\mathcal{B}(\mathbb{R})$. Since \mathbb{Q} is a countable union of real numbers, $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$.

b) Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote a probability space. Let $X : \Omega \to \mathbb{R}$ be an \mathcal{F} -measurable random variable. Is |X| also an \mathcal{F} -measurable random variable?

Answer: Yes. The function g(x) = |x| is continuous and therefore it is Borel-measurable. Since X is \mathcal{F} -measurable and g is Borel-measurable, then g(X) = |X| is also \mathcal{F} -measurable.

c) Is the converse of part b) true? That is, if |X| is an \mathcal{F} -measurable random variable, then is X an \mathcal{F} -measurable random variable?

Answer: No. For example, let $\Omega = \{-2, -1, 1, 2\}$, $\mathcal{F} = \sigma(\{\{-2, -1\}, \{1\}, \{2\}\})$, and $X(\omega) = \omega$. Then, |X| is \mathcal{F} -measurable, but X is not, since the set $\{X = -1\} = \{-1\}$ does not belong to \mathcal{F} .

d) Let X be a Gaussian random vector which is known to have the covariance matrix

$$\operatorname{Cov}(X) = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

Is X a continuous random vector?

Answer: No. The covariance matrix Cov(X) is not invertible, and so X is not a continuous vector. For example $X = (X_1, X_2, X_1 + X_2)$ where $X_1 \sim \mathcal{N}(0, 1)$ and $X_2 \sim \mathcal{N}(0, 1)$ could be such a vector. In particular, it will be supported on a hyperplane in 3D space which has Lebesgue measure zero.

e) Let $U \sim \text{Uniform}[0, 1]$ and define

$$X_n = n \mathbb{1}_{[0,\frac{1}{\sqrt{n}}]}(U), \quad n = 1, 2, \dots$$

Does X_n converge in probability to zero?

Answer: Yes. Observe that for any $\epsilon > 0$

$$\mathbb{P}\left(|X_n| \ge \epsilon\right) \le \mathbb{P}\left(U \le \frac{1}{\sqrt{n}}\right) = \frac{1}{\sqrt{n}} \to 0.$$

Exercise 2. (15 points)

Let Ω be an arbitrary set and \mathcal{F} be a σ -field on Ω . In this problem we will show that if \mathcal{F} is infinite, it must be uncountable. We will proceed with proof by contradiction and assume that \mathcal{F} is countable.

a) For every $\omega \in \Omega$, define $B_{\omega} = \bigcap_{A \in \mathcal{F}: \omega \in A} A$. Is $B_{\omega} \in \mathcal{F}$? Why or why not?

Answer: We have assumed that \mathcal{F} is countable. Thus, the collection of all the sets containing ω i.e., $S_{\omega} = \{A : \omega \in A\}$ can be at most countable, as $S_{\omega} \subset \mathcal{F}$. Further, note that the countable intersection of sets in \mathcal{F} is also an element of \mathcal{F} . Thus, $B_{\omega} := \cap S_{\omega}$ is an element of \mathcal{F} .

b) Let $C = \{B_{\omega}\}_{\omega \in \Omega}$ be a collection of all such unique B_{ω} . Argue that C partitions Ω and that it is at most finite, or countable.

Answer: To show that B_{ω} partitions \mathcal{F} we need to show that: 1) $\forall \omega_1, \omega_2 \in \Omega$, we have $B_{\omega_1} \cap B_{\omega_2} = \emptyset$ or $B_{\omega_1} = B_{\omega_2}$, 2) that $\bigcup_{\omega \in \Omega} B_{\omega} = \Omega$.

1) Suppose there exists $\omega_2 \in B_{\omega_1}$ such that $B_{\omega_1} \neq B_{\omega_2}$. Then, $B_{\omega_1} \cap B_{\omega_2}$ is a strict subset of B_{ω_2} or it is exactly B_{ω_2} . In the first case, it contradicts the fact that B_{ω_2} is the smallest set in \mathcal{F} containing ω_2 . In the second case, it means that B_{ω_2} is a proper subset of B_{ω_1} which again contradicts the fact that B_{ω_1} is the smallest set in \mathcal{F} containing ω_1 . Indeed, either $\omega_1 \in B_{\omega_2}$ or $\omega_1 \in B_{\omega_1} \cap B_{\omega_2}^c$.

2) Since every $\omega \in \Omega$ is in some $B_{\omega}, \cup_{\omega \in \Omega} B_{\omega} = \Omega$.

Since \mathcal{F} is countable, and \mathcal{C} is a subset of \mathcal{F} it is either countable or finite.

c) Argue that $\sigma(\mathcal{C}) = \mathcal{F}$. That is, the σ -field generated by \mathcal{C} is exactly \mathcal{F} .

Answer:

For any $A \in \mathcal{F}$ we can show that $A = \bigcup_{\omega \in A} B_{\omega}$. Indeed, $A \subset \bigcup_{\omega \in A} B_{\omega}$ is trivial. We can show that $\bigcup_{\omega \in A} B_{\omega} \subset A$ by a similar argument as in part b). Assume that there exists $\omega_1 \in \bigcup_{\omega \in A} B_{\omega}$ such that $\omega_1 \notin A$. But then, either $B_{\omega_1} \cap A = \emptyset$ or $B_{\omega_1} \cap A$ is a proper subset of B_{ω_1} which again contradicts the minimality of B_{ω_1} for some $\omega_2 \in B_{\omega_1} \cap A$.

d) Conclude from parts (a) - (c) that there is a contradiction and it is not possible for \mathcal{F} to be countable.

Answer: Observe that we have shown that C is exactly the set of atoms that generates \mathcal{F} and that it is either finite or countable. By part b), a union of any subcollection of C produces a distinct subset of \mathcal{F} . Thus, if C is finite, it's power set is also finite. If C is countable, its power set is uncountable (See PSET 1, exercise 1). Either way, this contradicts the original assumption.

Exercise 3. (14 points)

The moment-generating function of a random variable X is defined for any $t \in \mathbb{R}$ as

$$M_X(t) = \mathbb{E}\left(e^{tX}\right).$$

(Notice that it is similar but not equal to the characteristic function of X!) Let $X \sim Bi(n, p)$ where, recall that, the Binomial distribution with parameters (n, p) measures the probability of k successes in n independent Bernoulli trials each with parameter p.

a) Prove that for every $a \in \mathbb{R}$ and t > 0,

$$\mathbb{P}(X \ge a) \le e^{-ta} M_X(t).$$

Answer: The result follows directly from the Chebyshev-Markov inequality with $\psi(x) = e^{tx}$.

b) Show that

$$M_X(t) = (pe^t + (1-p))^n.$$

Answer: We can write $X = \sum_{i=1}^{n} B_i$, where the B_i 's are *n* iid Bernoulli(*p*) random variables. Then, for each B_i we have

$$\mathbb{E}(e^{tB_i}) = pe^t + 1 - p$$

so that we have

$$M_X(t) = \mathbb{E}(e^{tX})$$

= $\mathbb{E}(e^{t\sum B_i})$
= $\mathbb{E}\left(\prod_i e^{tB_i}\right)$
= $\prod_i \mathbb{E}(e^{tB_i})$
= $(pe^t + 1 - p)^n$.

c) Using the inequality in part a) and optimizing over all t > 0, show that for any fixed q such that p < q < 1,

$$\mathbb{P}(X \ge qn) \le \left(\frac{p}{q}\right)^{qn} \left(\frac{1-p}{1-q}\right)^{(1-q)n}.$$

Answer: By applying the inequality in part 1 to X with a = qn, we get

$$\mathbb{P}(X \ge gn) \le \left(\frac{pe^t + 1 - p}{e^{tq}}\right)^n$$

Since y^n is an increasing function for y > 0, in order to optimize the right-hand side over t, we can substitute $z = e^t$ and optimize the function

$$\frac{pz+1-p}{z^q}$$

over z > 0. By taking the derivative and putting it equal to 0, we get

$$\frac{pz^q - qz^{q-1}(pz+1-p)}{z^{2q}} = 0 \iff pz - pqz - q(1-p) = 0 \iff z = \frac{q}{p} \cdot \frac{1-p}{1-q}$$

Substituting $z = e^t$ in the right-hand side of the inequality leads to the result.

d) Using Markov inequality, show that

$$\mathbb{P}(X \ge qn) \le \frac{p}{q}$$

and compare this inequality with the one in part c).

Answer: We have that

$$\mathbb{E}(X) = \mathbb{E}\left(\sum_{i} B_{i}\right) = \sum_{i} \mathbb{E}(B_{i}) = np$$

so that Markov inequality for a = qn becomes

$$\mathbb{P}(X \ge qn) \le \frac{\mathbb{E}(X)}{nq} = \frac{np}{nq} = \frac{p}{q}.$$

Note that the second inequality does not depend on n. This is in general bad. In fact, when n is large we expect X to concentrate around np (its expectation). Since q > p, we therefore expect that $\mathbb{P}(X \ge qn) \to 0$ when $n \to \infty$. This is indeed what we get from the first inequality: the right-hand side goes to 0 when $n \to \infty$. However, the second inequality is just a constant for every n, and therefore it is very loose when n is large.

Exercise 4. (14 points)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with $\Omega = \{(\omega_1, \omega_2) : \omega_1, \omega_2 \in \{1, 2, \ldots, n\}\}$ for some $n \ge 1$, $\mathcal{F} = \mathcal{P}(\Omega)$ and $\mathbb{P}(\omega_1, \omega_2) = \frac{1}{n^2}$ for all $(\omega_1, \omega_2) \in \Omega$.

a) Let $X_1 = \omega_1 + \omega_2$. Describe $\sigma(\{X_1\})$, the σ -field generated by X_1 . How many atoms does it have? What are they?

Answer: The atoms of $\sigma({X_1})$ have the form $S_j = {w_1, w_2 : w_1 + w_2 = j}$ for j = 2, ..., 2n. Thus, it has 2n - 1 atoms, and consists of 2^{2n-1} subsets generated by every possible union of these atoms.

b) Let $X_2 = \omega_1 - \omega_2$. Are X_1 and X_2 independent? Why or why not?

Answer: No, X_1 and X_2 are not independent. For example,

$$\mathbb{P}(X_1 = 2, X_2 = 0) = \mathbb{P}(\{(\omega_1, \omega_2) = (1, 1)\}) = \frac{1}{n^2}.$$

On the other hand

$$\mathbb{P}(X_1 = 2) \mathbb{P}(X_2 = 0) = \frac{1}{n^2} \cdot \frac{1}{n}.$$

c) Let $X = \omega_1$, $Z = 1_{\{\omega_1 = \omega_2\}}$, and $Y = 1_{\{\omega_1 + \omega_2 = n+1\}}$. Are X, Y, Z pairwise independent? Why or why not?

Answer: It is always true that 1) $X \perp Z$ and $X \perp Y$. 2) For n even Z and Y are not independent. 3) For n odd, we also have that $Z \perp Y$.

1) $X \perp\!\!\!\perp Z$:

$$\mathbb{P}(X = j, Z = 1) = \mathbb{P}(\{(\omega_1, \omega_2) = (j, j)\}) = \frac{1}{n^2} = \frac{1}{n} \cdot \frac{1}{n} = \mathbb{P}(X = j) \mathbb{P}(Z = 1)$$

and

$$\mathbb{P}(X = j, Z = 0) = \mathbb{P}(\{(\omega_1, \omega_2) = (j, k) \colon k \neq j\}) = \frac{n-1}{n^2} = \frac{1}{n} \cdot \frac{n-1}{n} = \mathbb{P}(X = j) \mathbb{P}(Z = 0)$$

Note that $X \perp L Y$ follows by a completely symmetric argument.

2) For n odd Z and Y are not independent. We have

$$\mathbb{P}(Z = 1, Y = 1) = 0 \neq \frac{1}{n} \cdot \frac{1}{n} = \mathbb{P}(Z = 1) \mathbb{P}(Y = 1)$$

3) For n odd, we also have that $Z \perp \!\!\!\perp Y$:

$$\mathbb{P}(Z=1, Y=1) = \mathbb{P}\left(\left\{(\omega_1, \omega_2) = \left(\frac{n+1}{2}, \frac{n+1}{2}\right)\right\}\right) = \frac{1}{n^2} = \frac{1}{n} \cdot \frac{1}{n} = \mathbb{P}(Z=1) \mathbb{P}(Y=1)$$

also

$$\mathbb{P}(Z=0, Y=0) = \frac{n^2 - 2n + 1}{n^2} = \frac{n-1}{n} \cdot \frac{n-1}{n} = \mathbb{P}(Z=0) \mathbb{P}(Y=0)$$

and

$$\mathbb{P}(Z=1, Y=0) = \mathbb{P}\left(\left\{(\omega_1, \omega_2) = (j, j), j \neq \frac{n+1}{2}\right\}\right) = \frac{n-1}{n^2} = \frac{1}{n} \cdot \frac{n-1}{n} = \mathbb{P}(Z=1) \mathbb{P}(Y=0).$$

Finally, the case with $\mathbb{P}(Z = 0, Y = 1)$ follows by symmetry.