Midterm exam: solutions

Please pay attention to the presentation of your answers! (2 points)
Advanced Probability and Applications
EPFL - Spring Semester 2023-2024

Midterm exam

Please pay attention to the presentation of your answers! (2 points)
Exercise 1. Quiz. (15 points) Answer each yes/no question below (1 pt) and provide a short justification (proof or counter-example) for your answer (2 pts).
a) Let $\mathcal{B}(\mathbb{R})$ be the Borel σ-field on \mathbb{R}. Recall that \mathbb{Q} denotes the set of all rational numbers. Is $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$?

Answer: Yes. Every singleton $\{x\}, x \in \mathbb{R}$ belongs to $\mathcal{B}(\mathbb{R})$. Also, since $\mathcal{B}(\mathbb{R})$ is a σ-field, every countable union of sets in $\mathcal{B}(\mathbb{R})$ also belongs to $\mathcal{B}(\mathbb{R})$. Since \mathbb{Q} is a countable union of real numbers, $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$.
b) Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote a probability space. Let $X: \Omega \rightarrow \mathbb{R}$ be an \mathcal{F}-measurable random variable. Is $|X|$ also an \mathcal{F}-measurable random variable?

Answer: Yes. The function $g(x)=|x|$ is continuous and therefore it is Borel-measurable. Since X is \mathcal{F}-measurable and g is Borel-measurable, then $g(X)=|X|$ is also \mathcal{F}-measurable.
c) Is the converse of part b) true? That is, if $|X|$ is an \mathcal{F}-measurable random variable, then is X an \mathcal{F}-measurable random variable?

Answer: No. For example, let $\Omega=\{-2,-1,1,2\}, \mathcal{F}=\sigma(\{\{-2,-1\},\{1\},\{2\}\})$, and $X(\omega)=\omega$. Then, $|X|$ is \mathcal{F}-measurable, but X is not, since the set $\{X=-1\}=\{-1\}$ does not belong to \mathcal{F}.
d) Let X be a Gaussian random vector which is known to have the covariance matrix

$$
\operatorname{Cov}(X)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Is X a continuous random vector?
Answer: No. The covariance matrix $\operatorname{Cov}(X)$ is not invertible, and so X is not a continuous vector. For example $X=\left(X_{1}, X_{2}, X_{1}+X_{2}\right)$ where $X_{1} \sim \mathcal{N}(0,1)$ and $X_{2} \sim \mathcal{N}(0,1)$ could be such a vector. In particular, it will be supported on a hyperplane in 3D space which has Lebesgue measure zero.
e) Let $U \sim \operatorname{Uniform}[0,1]$ and define

$$
X_{n}=n 1_{\left[0, \frac{1}{\sqrt{n}}\right]}(U), \quad n=1,2, \ldots
$$

Does X_{n} converge in probability to zero?

Answer: Yes. Observe that for any $\epsilon>0$

$$
\mathbb{P}\left(\left|X_{n}\right| \geq \epsilon\right) \leq \mathbb{P}\left(U \leq \frac{1}{\sqrt{n}}\right)=\frac{1}{\sqrt{n}} \rightarrow 0 .
$$

Exercise 2. (15 points)

Let Ω be an arbitrary set and \mathcal{F} be a σ-field on Ω. In this problem we will show that if \mathcal{F} is infinite, it must be uncountable. We will proceed with proof by contradiction and assume that \mathcal{F} is countable.
a) For every $\omega \in \Omega$, define $B_{\omega}=\bigcap_{A \in \mathcal{F}: \omega \in A} A$. Is $B_{\omega} \in \mathcal{F}$? Why or why not?

Answer: We have assumed that \mathcal{F} is countable. Thus, the collection of all the sets containing ω i.e., $S_{\omega}=\{A: \omega \in A\}$ can be at most countable, as $S_{\omega} \subset \mathcal{F}$. Further, note that the countable intersection of sets in \mathcal{F} is also an element of \mathcal{F}. Thus, $B_{\omega}:=\cap S_{\omega}$ is an element of \mathcal{F}.
b) Let $\mathcal{C}=\left\{B_{\omega}\right\}_{\omega \in \Omega}$ be a collection of all such unique B_{ω}. Argue that \mathcal{C} partitions Ω and that it is at most finite, or countable.

Answer: To show that B_{ω} partitions \mathcal{F} we need to show that: 1) $\forall \omega_{1}, \omega_{2} \in \Omega$, we have $B_{\omega_{1}} \cap B_{\omega_{2}}=\emptyset$ or $B_{\omega_{1}}=B_{\omega_{2}}, 2$) that $\cup_{\omega \in \Omega} B_{\omega}=\Omega$.

1) Suppose there exists $\omega_{2} \in B_{\omega_{1}}$ such that $B_{\omega_{1}} \neq B_{\omega_{2}}$. Then, $B_{\omega_{1}} \cap B_{\omega_{2}}$ is a strict subset of $B_{\omega_{2}}$ or it is exactly $B_{\omega_{2}}$. In the first case, it contradicts the fact that $B_{\omega_{2}}$ is the smallest set in \mathcal{F} containing ω_{2}. In the second case, it means that $B_{\omega_{2}}$ is a proper subset of $B_{\omega_{1}}$ which again contradicts the fact that $B_{\omega_{1}}$ is the smallest set in \mathcal{F} containing ω_{1}. Indeed, either $\omega_{1} \in B_{\omega_{2}}$ or $\omega_{1} \in B_{\omega_{1}} \cap B_{\omega_{2}}^{c}$.
2) Since every $\omega \in \Omega$ is in some $B_{\omega}, \cup_{\omega \in \Omega} B_{\omega}=\Omega$.

Since \mathcal{F} is countable, and \mathcal{C} is a subset of \mathcal{F} it is either countable or finite.
c) Argue that $\sigma(\mathcal{C})=\mathcal{F}$. That is, the σ-field generated by \mathcal{C} is exactly \mathcal{F}.

Answer:

For any $A \in \mathcal{F}$ we can show that $A=\cup_{\omega \in A} B_{\omega}$. Indeed, $A \subset \cup_{\omega \in A} B_{\omega}$ is trivial. We can show that $\cup_{\omega \in A} B_{\omega} \subset A$ by a similar argument as in part b). Assume that there exists $\omega_{1} \in \cup_{\omega \in A} B_{\omega}$ such that $\omega_{1} \notin A$. But then, either $B_{\omega_{1}} \cap A=\emptyset$ or $B_{\omega_{1}} \cap A$ is a proper subset of $B_{\omega_{1}}$ which again contradicts the minimality of $B_{\omega_{1}}$ for some $\omega_{2} \in B_{\omega_{1}} \cap A$.
d) Conclude from parts (a) - (c) that there is a contradiction and it is not possible for \mathcal{F} to be countable.

Answer: Observe that we have shown that \mathcal{C} is exactly the set of atoms that generates \mathcal{F} and that it is either finite or countable. By part b), a union of any subcollection of \mathcal{C} produces a distinct subset of \mathcal{F}. Thus, if \mathcal{C} is finite, it's power set is also finite. If \mathcal{C} is countable, its power set is uncountable (See PSET 1, exercise 1). Either way, this contradicts the original assumption.

Exercise 3. (14 points)

The moment-generating function of a random variable X is defined for any $t \in \mathbb{R}$ as

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)
$$

(Notice that it is similar but not equal to the characteristic function of X !) Let $X \sim \operatorname{Bi}(\mathrm{n}, \mathrm{p}$) where, recall that, the Binomial distribution with parameters (n, p) measures the probability of k successes in n independent Bernoulli trials each with parameter p.
a) Prove that for every $a \in \mathbb{R}$ and $t>0$,

$$
\mathbb{P}(X \geq a) \leq e^{-t a} M_{X}(t)
$$

Answer: The result follows directly from the Chebyshev-Markov inequality with $\psi(x)=e^{t x}$.
b) Show that

$$
M_{X}(t)=\left(p e^{t}+(1-p)\right)^{n} .
$$

Answer: We can write $X=\sum_{i=1}^{n} B_{i}$, where the B_{i} 's are n iid $\operatorname{Bernoulli}(p)$ random variables. Then, for each B_{i} we have

$$
\mathbb{E}\left(e^{t B_{i}}\right)=p e^{t}+1-p
$$

so that we have

$$
\begin{aligned}
M_{X}(t) & =\mathbb{E}\left(e^{t X}\right) \\
& =\mathbb{E}\left(e^{t \sum B_{i}}\right) \\
& =\mathbb{E}\left(\prod_{i} e^{t B_{i}}\right) \\
& =\prod_{i} \mathbb{E}\left(e^{t B_{i}}\right) \\
& =\left(p e^{t}+1-p\right)^{n} .
\end{aligned}
$$

c) Using the inequality in part a) and optimizing over all $t>0$, show that for any fixed q such that $p<q<1$,

$$
\mathbb{P}(X \geq q n) \leq\left(\frac{p}{q}\right)^{q n}\left(\frac{1-p}{1-q}\right)^{(1-q) n}
$$

Answer: By applying the inequality in part 1 to X with $a=q n$, we get

$$
\mathbb{P}(X \geq g n) \leq\left(\frac{p e^{t}+1-p}{e^{t q}}\right)^{n}
$$

Since y^{n} is an increasing function for $y>0$, in order to optimize the right-hand side over t, we can substitute $z=e^{t}$ and optimize the function

$$
\frac{p z+1-p}{z^{q}}
$$

over $z>0$. By taking the derivative and putting it equal to 0 , we get

$$
\frac{p z^{q}-q z^{q-1}(p z+1-p)}{z^{2 q}}=0 \Longleftrightarrow p z-p q z-q(1-p)=0 \Longleftrightarrow z=\frac{q}{p} \cdot \frac{1-p}{1-q} .
$$

Substituting $z=e^{t}$ in the right-hand side of the inequality leads to the result.
d) Using Markov inequality, show that

$$
\mathbb{P}(X \geq q n) \leq \frac{p}{q}
$$

and compare this inequality with the one in part c).

Answer: We have that

$$
\mathbb{E}(X)=\mathbb{E}\left(\sum_{i} B_{i}\right)=\sum_{i} \mathbb{E}\left(B_{i}\right)=n p
$$

so that Markov inequality for $a=q n$ becomes

$$
\mathbb{P}(X \geq q n) \leq \frac{\mathbb{E}(X)}{n q}=\frac{n p}{n q}=\frac{p}{q} .
$$

Note that the second inequality does not depend on n. This is in general bad. In fact, when n is large we expect X to concentrate around $n p$ (its expectation). Since $q>p$, we therefore expect that $\mathbb{P}(X \geq q n) \rightarrow 0$ when $n \rightarrow \infty$. This is indeed what we get from the first inequality: the right-hand side goes to 0 when $n \rightarrow \infty$. However, the second inequality is just a constant for every n, and therefore it is very loose when n is large.

Exercise 4. (14 points)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with $\Omega=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{1}, \omega_{2} \in\{1,2, \ldots, n\}\right\}$ for some $n \geq 1$, $\mathcal{F}=\mathcal{P}(\Omega)$ and $\mathbb{P}\left(\omega_{1}, \omega_{2}\right)=\frac{1}{n^{2}}$ for all $\left(\omega_{1}, \omega_{2}\right) \in \Omega$.
a) Let $X_{1}=\omega_{1}+\omega_{2}$. Describe $\sigma\left(\left\{X_{1}\right\}\right)$, the σ-field generated by X_{1}. How many atoms does it have? What are they?

Answer: The atoms of $\sigma\left(\left\{X_{1}\right\}\right)$ have the form $S_{j}=\left\{w_{1}, w_{2}: w_{1}+w_{2}=j\right\}$ for $j=2, \ldots, 2 n$. Thus, it has $2 n-1$ atoms, and consists of $2^{2 n-1}$ subsets generated by every possible union of these atoms.
b) Let $X_{2}=\omega_{1}-\omega_{2}$. Are X_{1} and X_{2} independent? Why or why not?

Answer: No, X_{1} and X_{2} are not independent. For example,

$$
\mathbb{P}\left(X_{1}=2, X_{2}=0\right)=\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right)=(1,1)\right\}\right)=\frac{1}{n^{2}} .
$$

On the other hand

$$
\mathbb{P}\left(X_{1}=2\right) \mathbb{P}\left(X_{2}=0\right)=\frac{1}{n^{2}} \cdot \frac{1}{n} .
$$

c) Let $X=\omega_{1}, Z=1_{\left\{\omega_{1}=\omega_{2}\right\}}$, and $Y=1_{\left\{\omega_{1}+\omega_{2}=n+1\right\}}$. Are X, Y, Z pairwise independent? Why or why not?

Answer: It is always true that 1) $X \Perp Z$ and $X \Perp Y$. 2) For n even Z and Y are not independent. 3) For n odd, we also have that $Z \Perp Y$.

1) $X \Perp Z$:

$$
\mathbb{P}(X=j, Z=1)=\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right)=(j, j)\right\}\right)=\frac{1}{n^{2}}=\frac{1}{n} \cdot \frac{1}{n}=\mathbb{P}(X=j) \mathbb{P}(Z=1)
$$

and

$$
\mathbb{P}(X=j, Z=0)=\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right)=(j, k): k \neq j\right\}\right)=\frac{n-1}{n^{2}}=\frac{1}{n} \cdot \frac{n-1}{n}=\mathbb{P}(X=j) \mathbb{P}(Z=0)
$$

Note that $X \Perp Y$ follows by a completely symmetric argument.
2) For n odd Z and Y are not independent. We have

$$
\mathbb{P}(Z=1, Y=1)=0 \neq \frac{1}{n} \cdot \frac{1}{n}=\mathbb{P}(Z=1) \mathbb{P}(Y=1)
$$

3) For n odd, we also have that $Z \Perp Y$:

$$
\mathbb{P}(Z=1, Y=1)=\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right)=\left(\frac{n+1}{2}, \frac{n+1}{2}\right)\right\}\right)=\frac{1}{n^{2}}=\frac{1}{n} \cdot \frac{1}{n}=\mathbb{P}(Z=1) \mathbb{P}(Y=1)
$$

also

$$
\mathbb{P}(Z=0, Y=0)=\frac{n^{2}-2 n+1}{n^{2}}=\frac{n-1}{n} \cdot \frac{n-1}{n}=\mathbb{P}(Z=0) \mathbb{P}(Y=0)
$$

and
$\mathbb{P}(Z=1, Y=0)=\mathbb{P}\left(\left\{\left(\omega_{1}, \omega_{2}\right)=(j, j), j \neq \frac{n+1}{2}\right\}\right)=\frac{n-1}{n^{2}}=\frac{1}{n} \cdot \frac{n-1}{n}=\mathbb{P}(Z=1) \mathbb{P}(Y=0)$.
Finally, the case with $\mathbb{P}(Z=0, Y=1)$ follows by symmetry.

