## Midterm exam

Please pay attention to the presentation of your answers! (2 points)
Exercise 1. Quiz. (15 points) Answer each yes/no question below (1 pt) and provide a short justification (proof or counter-example) for your answer (2 pts).
a) Let $\mathcal{B}(\mathbb{R})$ be the Borel $\sigma$-field on $\mathbb{R}$. Recall that $\mathbb{Q}$ denotes the set of all rational numbers. Is $\mathbb{Q} \in \mathcal{B}(\mathbb{R})$ ?
b) Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote a probability space. Let $X: \Omega \rightarrow \mathbb{R}$ be an $\mathcal{F}$-measurable random variable. Is $|X|$ also an $\mathcal{F}$-measurable random variable?
c) Is the converse of part b) true? That is, if $|X|$ is an $\mathcal{F}$-measurable random variable, then is $X$ an $\mathcal{F}$-measurable random variable?
d) Let $X$ be a Gaussian random vector which is known to have the covariance matrix

$$
\operatorname{Cov}(X)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

Is $X$ a continuous random vector?
e) Let $U \sim \operatorname{Uniform}[0,1]$ and define

$$
X_{n}=n 1_{\left[0, \frac{1}{\sqrt{n}}\right]}(U), \quad n=1,2, \ldots
$$

Does $X_{n}$ converge in probability to zero?

## Exercise 2. (15 points)

Let $\Omega$ be an arbitrary set and $\mathcal{F}$ be a $\sigma$-field on $\Omega$. In this problem we will show that if $\mathcal{F}$ is infinite, it must be uncountable. We will proceed with proof by contradiction and assume that $\mathcal{F}$ is countable.
a) For every $\omega \in \Omega$, define $B_{\omega}=\bigcap_{A \in \mathcal{F}: \omega \in A} A$. Is $B_{\omega} \in \mathcal{F}$ ? Why or why not?
b) Let $\mathcal{C}=\left\{B_{\omega}\right\}_{\omega \in \Omega}$ be a collection of all such unique $B_{\omega}$. Argue that $\mathcal{C}$ partitions $\Omega$ and that it is at most finite, or countable.
c) Argue that $\sigma(\mathcal{C})=\mathcal{F}$. That is, the $\sigma$-field generated by $\mathcal{C}$ is exactly $\mathcal{F}$.
d) Conclude from parts (a) - (c) that there is a contradiction and it is not possible for $\mathcal{F}$ to be countable.

## Exercise 3. (14 points)

The moment-generating function of a random variable $X$ is defined for any $t \in \mathbb{R}$ as

$$
M_{X}(t)=\mathbb{E}\left(e^{t X}\right)
$$

(Notice that it is similar but not equal to the characteristic function of $X$ !) Let $X \sim \operatorname{Bi}(\mathrm{n}, \mathrm{p}$ ) where, recall that, the Binomial distribution with parameters $(n, p)$ measures the probability of $k$ successes in $n$ independent Bernoulli trials each with parameter $p$.
a) Prove that for every $a \in \mathbb{R}$ and $t>0$,

$$
\mathbb{P}(X \geq a) \leq e^{-t a} M_{X}(t)
$$

b) Show that

$$
M_{X}(t)=\left(p e^{t}+(1-p)\right)^{n}
$$

c) Using the inequality in part a) and optimizing over all $t>0$, show that for any fixed $q$ such that $p<q<1$,

$$
\mathbb{P}(X \geq q n) \leq\left(\frac{p}{q}\right)^{q n}\left(\frac{1-p}{1-q}\right)^{(1-q) n}
$$

d) Using Markov inequality, show that

$$
\mathbb{P}(X \geq q n) \leq \frac{p}{q}
$$

and compare this inequality with the one in part c).

## Exercise 4. (14 points)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space with $\Omega=\left\{\left(\omega_{1}, \omega_{2}\right): \omega_{1}, \omega_{2} \in\{1,2, \ldots, n\}\right\}$ for some $n \geq 1$, $\mathcal{F}=\mathcal{P}(\Omega)$ and $\mathbb{P}\left(\omega_{1}, \omega_{2}\right)=\frac{1}{n^{2}}$ for all $\left(\omega_{1}, \omega_{2}\right) \in \Omega$.
a) Let $X_{1}=\omega_{1}+\omega_{2}$. Describe $\sigma\left(\left\{X_{1}\right\}\right)$, the $\sigma$-field generated by $X_{1}$. How many atoms does it have? What are they?
b) Let $X_{2}=\omega_{1}-\omega_{2}$. Are $X_{1}$ and $X_{2}$ independent? Why or why not?
c) Let $X=\omega_{1}, Z=1_{\left\{\omega_{1}=\omega_{2}\right\}}$, and $Y=1_{\left\{\omega_{1}+\omega_{2}=n+1\right\}}$. Are $X, Y, Z$ pairwise independent? Why or why not?

