Quantum computation: lecture 7 (Rüdiger)
Factorization: $N \in \mathbb{N}=\pi p_{i}^{e_{i}} p_{i}$ primes ai natural numbers Size $(N)=\log _{2} N=\#$ bits required to represent N

To multiply requires $O\left(\operatorname{sit} e(N)^{2}\right)$ operations (or less)
To factorize requires $O\left(e^{\operatorname{size}(N)^{1 / 3}}\right)$ operations, classically

Task: Gen N, find a nou-trivial factor of N Classical algorithm:

- Pick $a \in\{2, \ldots, N-1\}$ uniformly at random
- Compute $d=\operatorname{gcd}(a, N)$ with Euclid's alpo.
- If $d>1$, return d
- If $d=1$, find the multiplicative order of a modulo N, ie. (see next page)
find the smallest natural number r such that $a^{r}=1 \bmod N$.

Aside: if $\operatorname{gcd}(a, N)=1$, then $\exists \alpha \in\{2 \ldots N-1\}$ st. $a \cdot \alpha=1 \bmod N$ (multiplicative invenc)
Example: $N=5, a=2, \operatorname{gcd}(a, N)=1 \Rightarrow \alpha=3$
Proof: extended Eudid's algo gives (α, v) s.t. $a \cdot \alpha+N \cdot v=1 \quad$ ie. $\quad a \cdot \alpha=1 \bmod N_{\#}$

Given a and N st. $\operatorname{gcd}(a, N)=1$, could it be that $a^{r}=0 \bmod N$ for same r ?
Claim: this cannot happen: $1=a \cdot \alpha=(a \cdot \alpha)^{n}$
$=a^{r} \cdot \alpha^{r} \bmod N$ so $a^{r} \neq 0 \bmod N$
So $a, a^{2}, a^{3}, a^{4}, \ldots$. is never 0
So $\exists r_{1} \neq r_{2}$ st. $a^{r_{1}}=a^{r_{2}} \bmod N$ (there are only N-1 nan zero elements).

Say $r_{1}>r_{2}: \quad a^{r_{1}}-a^{r_{2}}=0 \bmod N$ so $\quad a^{r_{2}} \cdot\left(a^{r_{1}-r_{2}}-1\right)=0 \bmod N$
so $\underbrace{\alpha^{r_{2}} \cdot a^{r_{2}}} \cdot\left(a^{r_{1}-r_{2}}-1\right)=0 \bmod N$ $=(\alpha \cdot a)^{r_{2}}=1 \bmod N$ (so nato)
So $a^{r_{1}-r_{2}}-1=0 \bmod N$
so $\exists r>0 \quad$ sit. $a^{r}=1 \bmod N$ (and finite) $(r=$ "order" of a mod $N)$

Back to the factoring algorithm:
Let r be the smallest natural number such that $a^{r}=1 \bmod N$.
(NB: this is the difficult part, where the)

- If r is odd, then declare failure \& restart
- If r is even, then write $a^{r}-1=\left(a^{r / 2}-1\right)\left(a^{r / 2}+1\right)$
- Can it be that $a^{1 / 2}-1=0 \bmod N$? No, because we assumed that r is the smallest value sit. $a^{r}-1=0 \bmod N$.
- So $\frac{a^{r}-1}{\text { multiple of } N}=\frac{\left(a^{r / 2}-1\right)}{\begin{array}{c}\text { not a mil- } \\ \text { triple of } N\end{array}} \cdot\left(a^{r / 2}+1\right)$. $\left\{\begin{array}{l}\text { either } a^{r / 2}+1 \text { is a multiple of } N \text { : declare failure } \\ \text { or } \operatorname{gcd}\left(a^{r / 2}-1, N\right) \text { and } \operatorname{gcd}\left(a^{r / 2}+1, N\right)\end{array}\right.$ are non-mvial \rightarrow we are done

Claim: $\mathbb{P}($ failure of the algol $) \leq \frac{1}{4}$ (wither proof)
We will see next hov to compute r efficiently with a quantum algorithms.
(We know that $1 \leq r \leq N-1$, so checking all the possible values of r is prohibitive; Classically, we can do a bit better than that.)

Note: There are easy numbers to factorize:

- N even
- N multiple of 3
- N multiple of 5
- $N=p^{e}$ (ry all the roots)

The hardest numbers to factorize are:
$N=p \cdot q$ with $p \neq q$ large primes

Task: find the multiplicative order of a mod N ie. The smallest value of $r>0$ s.t. $a^{r}=1 \bmod N$
Define $f_{a, N}(x)=a^{x} \bmod N$

$$
f_{a, N}: \mathbb{Z} \rightarrow \mathbb{Z}
$$

Then $f_{a, v}(x+r)=f_{a, N}(x) \quad \forall x \in \mathbb{Z}$
So r is also the period of $f a, N$
$\Delta|\mathbb{Z}|=\infty$, but Sima's algo was operating an a pint daman

Sdution: Pick $M \gg r$ (typically $M \sim N^{2}$) and $f:\{0 . . M-1\} \longrightarrow\{0 . . M-1\}$
For nav, assume for simplicity $M=2^{m}$ for same $m \geqslant 1$ and $M=k \cdot r$ for same $k \geqslant 1$.

Quantum circuir:

$$
\begin{aligned}
\left|\psi_{0}\right\rangle & =\underbrace{|0 \ldots 0\rangle}_{m} \otimes \underbrace{|0 \ldots 0\rangle}_{m} \\
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{7}} \sum_{x=0}^{M-1}|x\rangle \otimes|0 \ldots 0\rangle \\
\left|\psi_{2}\right\rangle & =\frac{1}{\sqrt{M}} \sum_{x=0}^{m-1}|x\rangle \otimes|f(x)\rangle \\
& \left.=\frac{1}{\sqrt{M}} \sum_{x_{0}=0}^{n-1} \sum_{j=0}^{M-1}\left|x_{0}+j r\right\rangle \otimes \right\rvert\, \underbrace{\left.f\left(x_{0}+j r\right)\right\rangle}_{=f\left(x_{0}\right)}
\end{aligned}
$$

Quantum Farrier transform
QT $|x\rangle=\frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} \exp \left(\frac{2 \pi i x y}{M}\right)|y\rangle$
= unitary operation
State $\left|\psi_{3}\right\rangle$, measurement \Rightarrow next week! (and sane more details...)

