
Exercise Set 5
Quantum Computation

Exercise 1 Difference(s) between Deutsch-Josza’s and Simon’s circuits

Let H be a linear subspace of {0, 1}n of dimensison n− 1 and f : {0, 1}n → {0, 1} be the
function defined as {

f(x) = 0 if x ∈ H
f(x) = 1 if x 6∈ H

(a) Assume we run Deutsch-Josza’s circuit with the quantum oracle Uf corresponding to the
above function f (starting with the same input state |ψ0〉 = |0, 0, . . . , 0〉⊗ |1〉 as in D-J’s
algorithm). What is/are then the possible output state(s) of the circuit, and its/their
associated probability(ies)?

Consider in particular the special cases n = 3 and H1 = span{(1, 0, 0), (0, 1, 0)}, as well
as n = 3 and H2 = span{(1, 1, 0), (0, 0, 1)} (Hint: You may actually start with these
examples in order to figure out what happens in the general case).

(b) What difference(s) do you observe with the output of Simon’s circuit (with the same
quantum oracle Uf and the input state |ψ0〉 = |0, 0, . . . , 0〉 ⊗ |0〉)?

Exercise 2 Outcome probabilities of Simon’s algorithm

Let H be a k-dimensional linear subspace of {0, 1}n. Compute the exact success probabil-
ity of one run of Simon’s algorithm. Assuming that n is fixed, for what value of 1 ≤ k ≤ n−1
is this success probability the smallest / the largest? What is the asymptotic value as n→∞
of this success probability in both cases? (in one of the two cases, an approximative value
suffices)

Exercise 3 Deutsch-Josza’s algorithm with noisy Hadamard gates

Let us consider Deutsch’s problem with n = 2. The aim of the algorithm is to decide
whether f : {0, 1}2 → {0, 1} is constant or balanced by using the following circuit:
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where the Hadamard gates Hε (with 0 ≤ ε ≤ 1) are defined asHε |0〉 =
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(a) Verify that Hε is unitary, for any 0 ≤ ε ≤ 1.

(b) Compute the probability that the output state of the (first two qubits of the) above
circuit is equal to (0, 0) when f is constant.

(c) In order to ensure an error probability no greater than δ, what is the (approximate)
maximum value taken by the parameter ε? Check in particular the cases δ = 0.1 and
δ = 0.01.

Exercise 4 Implementation of Simon’s algorithm

In this exercise, you will implement Simon’s algorithm on the IBM-Q machine (use the
simulator only!) to find a hidden subspace H of codewords within the vector space {0, 1}n
of binary strings of length n.

The dimension of the hidden subspace is k = 4. To implement the algorithm, you are
given an oracle whose function is to apply the parity check matrix P to any binary vector v
of length n = 7, where P · v = 0 if and only if v ∈ H, the hidden subspace. In other words,
consider two vectors v1, v2: P · (v1 − v2) = 0 iff v1 − v2 ∈ H.

The parity check matrix P is given by

P =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


(a) How many qubits does your circuit need in total? Which of those will be measured?

(b) Implement the circuit; in particular, design the oracle.

(c) How many shots (at least) do you need to find H? In other words, how many linearly
independent output vectors do you need to determine the hidden subspace?

(d) Verify that the result of measurements (with the number of shots from (c)) forms the
orthogonal subspace H⊥. Don’t forget to check that the output vectors are linearly
independent! Repeat the experiment to find the basis of H⊥.

(e) We do not ask you to find the basis of H. However, to verify your results, check that the
output binary vectors y1, . . . , yn−k after the measurement indeed belong to the orthogonal
subspace H⊥. To do that, recall that P is the parity check matrix of the (7,4)-Hamming
code, so all the vectors y1, . . . , yn−k you measure should be orthogonal to the matrix H
which forms the basis of the hidden subspace of codewords, i.e. ∀i : H · yi = 0.

H =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1



2


