Exercise Set 5 Quantum Computation

Exercise 1 Difference(s) between Deutsch-Josza's and Simon's circuits

Let H be a linear subspace of $\{0,1\}^n$ of dimensison n-1 and $f:\{0,1\}^n \to \{0,1\}$ be the function defined as

$$\begin{cases} f(x) = 0 & \text{if } x \in H \\ f(x) = 1 & \text{if } x \notin H \end{cases}$$

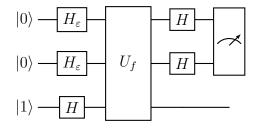
- (a) Assume we run Deutsch-Josza's circuit with the quantum oracle U_f corresponding to the above function f (starting with the same input state $|\psi_0\rangle = |0, 0, \dots, 0\rangle \otimes |1\rangle$ as in D-J's algorithm). What is/are then the possible output state(s) of the circuit, and its/their associated probability(ies)?
 - Consider in particular the special cases n = 3 and $H_1 = \text{span}\{(1,0,0),(0,1,0)\}$, as well as n = 3 and $H_2 = \text{span}\{(1,1,0),(0,0,1)\}$ (*Hint:* You may actually start with these examples in order to figure out what happens in the general case).
- (b) What difference(s) do you observe with the output of Simon's circuit (with the same quantum oracle U_f and the input state $|\psi_0\rangle = |0, 0, \dots, 0\rangle \otimes |0\rangle$)?

Exercise 2 Outcome probabilities of Simon's algorithm

Let H be a k-dimensional linear subspace of $\{0,1\}^n$. Compute the exact success probability of one run of Simon's algorithm. Assuming that n is fixed, for what value of $1 \le k \le n-1$ is this success probability the smallest / the largest? What is the asymptotic value as $n \to \infty$ of this success probability in both cases? (in one of the two cases, an approximative value suffices)

Exercise 3 Deutsch-Josza's algorithm with noisy Hadamard gates

Let us consider Deutsch's problem with n=2. The aim of the algorithm is to decide whether $f:\{0,1\}^2 \to \{0,1\}$ is constant or balanced by using the following circuit:



where the Hadamard gates H_{ε} (with $0 \le \varepsilon \le 1$) are defined as

$$\begin{cases} H_{\varepsilon} |0\rangle = \sqrt{\frac{1+\varepsilon}{2}} |0\rangle + \sqrt{\frac{1-\varepsilon}{2}} |1\rangle \\ H_{\varepsilon} |1\rangle = \sqrt{\frac{1-\varepsilon}{2}} |0\rangle - \sqrt{\frac{1+\varepsilon}{2}} |1\rangle \end{cases}$$

- (a) Verify that H_{ε} is unitary, for any $0 \le \varepsilon \le 1$.
- (b) Compute the probability that the output state of the (first two qubits of the) above circuit is equal to (0,0) when f is constant.
- (c) In order to ensure an error probability no greater than δ , what is the (approximate) maximum value taken by the parameter ε ? Check in particular the cases $\delta = 0.1$ and $\delta = 0.01$.

Exercise 4 Implementation of Simon's algorithm

In this exercise, you will implement Simon's algorithm on the IBM-Q machine (use the simulator only!) to find a hidden subspace H of codewords within the vector space $\{0,1\}^n$ of binary strings of length n.

The dimension of the hidden subspace is k=4. To implement the algorithm, you are given an oracle whose function is to apply the parity check matrix P to any binary vector v of length n=7, where $P \cdot v = 0$ if and only if $v \in H$, the hidden subspace. In other words, consider two vectors v_1, v_2 : $P \cdot (v_1 - v_2) = 0$ iff $v_1 - v_2 \in H$.

The parity check matrix P is given by

$$P = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- (a) How many qubits does your circuit need in total? Which of those will be measured?
- (b) Implement the circuit; in particular, design the oracle.
- (c) How many shots (at least) do you need to find H? In other words, how many linearly independent output vectors do you need to determine the hidden subspace?
- (d) Verify that the result of measurements (with the number of shots from (c)) forms the orthogonal subspace H^{\perp} . Don't forget to check that the output vectors are linearly independent! Repeat the experiment to find the basis of H^{\perp} .
- (e) We do not ask you to find the basis of H. However, to verify your results, check that the output binary vectors y_1, \ldots, y_{n-k} after the measurement indeed belong to the orthogonal subspace H^{\perp} . To do that, recall that P is the parity check matrix of the (7,4)-Hamming code, so all the vectors y_1, \ldots, y_{n-k} you measure should be orthogonal to the matrix H which forms the basis of the hidden subspace of codewords, i.e. $\forall i: H \cdot y_i = 0$.

$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$