
Exercise Set 7: Solution
Quantum Computation

Exercise 1 Quantum Fourier Transform

(a) When M = 2,

QFT =
1√
2

(
1 1
1 −1

)
= H

is simply the Hadamard transform.

(b) When M = 4,

QFT =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 so QFT † =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


and one can check indeed that QFT ·QFT † = I.

(c) By definition, it holds that

QFT |x〉 =
1

2
(|0〉+ ix |1〉+ (−1)x |2〉+ (−i)x |3〉)

which can be rewritten as

QFT |x〉 =
1

2
(|00〉+ ix |01〉+ (−1)x |10〉+ (−i)x |11〉) =

1

2
(|0〉+ (−1)x |1〉)⊗(|0〉+ ix |1〉)

(d) Even though one may be tempted to deduce from the last expression that QFT can be
written as a tensor product, this is not the case! The reason is that x here is a number
between 0 and 3 and not a single bit. Formally, one can check by contradiction that
there exist no 2 × 2 matrices A and B such that QFT = A ⊗ B: the elements of the
first row and column of QFT are all equal: this implies that both a11 = a12 = a21 and
b11 = b12 = b21; then it becomes impossible to recover QFT = A⊗B.
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Exercise 2 Phase estimation based on the Quantum Fourier Transform

(a) dim(S) = dim(|x〉)× dim(|y〉)× dim(|ψ〉) = dim(C2)× dim(C2)× dim
(
(C2)⊗n

)
= 22+n.

The circuit corresponding to S:

H	

H	

…
	

|xi

|yi

| i U2	 U	

(QFT)†

…
	

(b) The state after the H’s: H |0〉 ⊗H |0〉 ⊗ |u〉 = 1
2

(
|00u〉+ |01u〉+ |10u〉+ |11u〉

)
The state after U2x (or R1):

1
2

(
|00u〉+ |01u〉+ e4πiϕ |10u〉+ e4πiϕ |11u〉

)
The state after Uy (or R2):

1
2

(
|00u〉+ e2πiϕ |01u〉+ e4πiϕ |10u〉+ e6πiϕ |11u〉

)
(c) We can write the last expression as

1

2

∑
y1,y0∈{0,1}

e2πiϕ(2y1+y0) |y1, y0〉 ⊗ |u〉 =
1

2

∑
y1,y0∈{0,1}

e
2πi
4

(2ϕ1+ϕ0)(2y1+y0) |y1, y0〉 ⊗ |u〉

= QFT |ϕ1, ϕ0〉 ⊗ |u〉

QFT is unitary and therefore (QFT )†(QFT ) = In. Then, the output state of the circuit
is |ϕ1〉 ⊗ |ϕ0〉 ⊗ |u〉.

(d) It suffices to measure the two first qubits because they are |ϕ1〉 ⊗ |ϕ0〉.

Exercise 3 Effect of imperfections in some gates in Shor’s algorithm

(a) After the Hadamard gates, the state is

H̃0 ⊗ H̃1 ⊗ I⊗ I(|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉)

=

(
1√
2

)2

(|0〉+ eiϕ0|1〉)⊗ (|0〉+ eiϕ1|1〉)⊗ |0〉 ⊗ |0〉

=
1√
4

(|00〉+ eiϕ0|10〉+ eiϕ1|01〉+ ei(ϕ0+ϕ1)|11〉)⊗ |00〉

=
1√
4

(|0〉+ eiϕ1|1〉+ eiϕ0|2〉+ ei(ϕ0+ϕ1)|3〉)⊗ |0〉
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(b) After the oracle Uf , we obtain the state

1√
4

(|0〉 ⊗ |f(0)〉+ eiϕ1|1〉 ⊗ |f(1)〉+ eiϕ0|2〉 ⊗ |f(2)〉+ ei(ϕ0+ϕ1)|3〉 ⊗ |f(3)〉)

Since f(x) = f(x+ 2), we have:

1√
4

(|0〉+ eiϕ0 |2〉)⊗ |f(0)〉+
1√
4

(eiϕ1|1〉+ ei(ϕ0+ϕ1)|3〉)⊗ |f(1)〉

Applying the QFT to each term:

1

4

3∑
y=0

(1 + ei(ϕ0+
π
2
2y))|y〉 ⊗ |f(0)〉+

1

4

3∑
y=0

(ei(ϕ1+
π
2
y) + ei(ϕ0+ϕ1+

π
2
3y))|y〉 ⊗ |f(1)〉

(c) The state right after the measurement is

|ψ4〉 =
1

4
(1 + ei(ϕ0+πy))|y〉 ⊗ |f(0)〉+

1

4
ei(ϕ1+

π
2
y)(1 + ei(ϕ0+πy))|y〉 ⊗ |f(1)〉.

The probability of obtaining y is then given by

Prob(y|ϕ0, ϕ1) =
1

16

{
|1 + ei(ϕ0+πy)|2 + |1 + ei(ϕ0+πy)|2

}
=

1

8

(
(1 + cos(ϕ0 + πy))2 + sin2(ϕ0 + πy)

)
⇒ Prob(y|ϕ0, ϕ1) =

1

4
(1 + cos(ϕ0 + πy))

We see that, curiously, this probability does not depend on ϕ1. Therefore, Shor’s algo-
rithm appears robust to this phase shift.

(d)
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Prob(y) =

∫
dϕ0 Prob(y|ϕ0) Prob(ϕ0) =

∫ 2π

0

dϕ0

2π
Prob(y|ϕ0) =

1

4

In an NMR experiment, these spectra are obtained. In the cases when ϕ0 = 0, π
4
, 3π

4
or

π, we can read the period.
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