Exercise 1 Quantum Fourier Transorm

The Quantum Fourier Transform is the linear map acting on $\mathcal{H}=\mathbb{C}^{M}$ (with $M=2^{m}$) defined as

$$
Q F T|x\rangle=\frac{1}{\sqrt{M}} \sum_{y=0}^{M-1} \exp (2 \pi i x y / M)|y\rangle, \quad 0 \leq x \leq M-1
$$

Remarks:

- Watch out that here, the product $x y$ is the actual product of the two numbers x and y, and not the dot product $x \cdot y$ of the binary (vector) representations of x and y, as defined in Deutsch-Josza's algorithm. For example, if $x=2$ and $y=2$, then $x y=4$, whereas $x \cdot y=(1,0) \cdot(1,0)=1+0=1$.
- Nevertheless, $|x\rangle$ and $|y\rangle$ are still here the short-hand notations for $\left|x_{1}, \ldots, x_{m}\right\rangle$ and $\left|y_{1}, \ldots, y_{m}\right\rangle$, where x_{1}, \ldots, x_{m} and y_{1}, \ldots, y_{m} are the binary representations of x and y.
(a) When $M=2$, write down explicitly the matrix representation of QFT. What gate is that?
(b) When $M=4$, write down explicitly the matrix representation of QFT, and check that it is unitary.
(c) Still when $M=4$, show that QFT satisfies the equality

$$
Q F T|x\rangle=\frac{1}{2}\left(|0\rangle+(-1)^{x}|1\rangle\right) \otimes\left(|0\rangle+i^{x}|1\rangle\right)
$$

(d) Can QFT be written as a tensor product of two 2×2 matrices A and B in this case? Justify.

Exercise 2 Phase estimation based on the Quantum Fourier Transform

Let U be an unitary $2^{n} \times 2^{n}$ matrix (here, $n \geq 1$) with an eigenvector $|u\rangle$ and corresponding eigenvalue $e^{2 \pi i \varphi}$. That means:

$$
U|u\rangle=e^{2 \pi i \varphi}|u\rangle .
$$

We assume

$$
\varphi=\frac{\varphi_{1}}{2}+\frac{\varphi_{0}}{4}
$$

with binary $\varphi_{1}, \varphi_{0} \in\{0,1\}$. In this problem, we study an "algorithm of phase estimation" which allows us to find φ assuming that the eigenvector $|u\rangle$ is known.

Recall that the Quantum Fourier Transform acting on two qubits is defined as

$$
Q F T\left|x_{1}, x_{0}\right\rangle=\frac{1}{2} \sum_{y_{0}, y_{1} \in\{0,1\}} e^{\frac{2 \pi i}{4}\left(2 x_{1}+x_{0}\right)\left(2 y_{1}+y_{0}\right)}\left|y_{1}, y_{0}\right\rangle
$$

where $x_{1}, x_{0} \in\{0,1\}$. We also define the following (controlled) operations which are performed on $2+n$ qubits (here, $x, y \in\{0,1\}$ and $|\psi\rangle \in \mathbb{C}^{\otimes n}$)

$$
\begin{aligned}
& R_{1}|x\rangle \otimes|y\rangle \otimes|\psi\rangle=|x\rangle \otimes|y\rangle \otimes U^{2 x}|\psi\rangle \\
& R_{2}|x\rangle \otimes|y\rangle \otimes|\psi\rangle=|x\rangle \otimes|y\rangle \otimes U^{y}|\psi\rangle .
\end{aligned}
$$

Now, let S be the following unitary matrix:

$$
S=\left((Q F T)^{\dagger} \otimes I_{n}\right) R_{2} R_{1}\left(H \otimes H \otimes I_{n}\right)
$$

where H is the usual Hadamard matrix and I_{n} is the identity matrix acting on n qubits. Here, $(Q F T)^{\dagger}$ is the conjugate transpose of $Q F T$.
(a) What is the size of the unitary matrix S ? Draw the circuit corresponding to S.
(b) We initialize the circuit with the state $|0\rangle \otimes|0\rangle \otimes|u\rangle$. Calculate the state of $2+n$ qubits right before the gate $(Q F T)^{\dagger}$.
(c) Check that the expression found in (b) is the same as $Q F T\left|\varphi_{1}, \varphi_{0}\right\rangle \otimes|u\rangle$. What is, therefore, the output state of the circuit?
(d) Deduce that we can find φ by doing one and only one measurement of the two first qubits of the circuit output.

Exercise 3 Effect of imperfections in some gates in Shor's algorithm
We consider a function on \mathbb{Z} with a period equal to 2 , i.e., $f(x)=f(x+2), x \in \mathbb{Z}$. We would like to study the circuit below (see figure on the next page) where the usual Hadamard gates are modified with a random perturbation:

$$
\begin{aligned}
& \widetilde{H}_{0}|b\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b} e^{i \varphi_{0}}|1\rangle\right), \text { where } b=0,1 \\
& \widetilde{H}_{1}|b\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{b} e^{i \varphi_{1}}|1\rangle\right), \text { where } b=0,1
\end{aligned}
$$

and φ_{0} and φ_{1} are uniformly distributed on $[0,2 \pi]$.

The circuit is initialized with the state $\left|\psi_{0}\right\rangle=|0\rangle \otimes|0\rangle \otimes|0\rangle \otimes|0\rangle$. We will denote $|0\rangle \otimes|0\rangle=|0\rangle ;|0\rangle \otimes|1\rangle=|1\rangle ;|1\rangle \otimes|0\rangle=|2\rangle ;|1\rangle \otimes|1\rangle=|3\rangle$ and define for $x, y \in \mathbb{Z}$:

$$
\begin{aligned}
& U_{f}|x\rangle \otimes|y\rangle=|x\rangle \otimes|y+f(x)\rangle \\
& \text { QFT }|x\rangle=\frac{1}{\sqrt{4}} \sum_{y=0}^{3} \exp \left(\frac{2 \pi i}{4} x y\right)|y\rangle
\end{aligned}
$$

(a) Show that the state after the gates of Hadamard type is:

$$
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{4}}\left(|0\rangle+e^{i \varphi_{1}}|1\rangle+e^{i \varphi_{0}}|2\rangle+e^{i\left(\varphi_{0}+\varphi_{1}\right)}|3\rangle\right) \otimes|0\rangle
$$

(b) Show that the state right before the measurement is

$$
\left|\psi_{3}\right\rangle=\frac{1}{4} \sum_{y=0}^{3}\left(1+e^{i\left(\varphi_{0}+\pi y\right)}\right)|y\rangle \otimes|f(0)\rangle+\left(e^{i\left(\varphi_{1}+\frac{\pi}{2} y\right)}+e^{i\left(\varphi_{0}+\varphi_{1}+\frac{3 \pi}{2} y\right)}\right)|y\rangle \otimes|f(1)\rangle
$$

(c) We measure two first qubits in the basis defined by the projectors:

$$
\left\{P_{y} \otimes \mathbb{I}_{4 \times 4}=|y\rangle\langle y| \otimes \mathbb{I}_{4 \times 4} ; y=0,1,2,3\right\}
$$

Find the state right after the measurement (up to the normalizing constant). Then, calculate the probability of getting y. You should see that the result is independent of φ_{1}.
(d) In the previous question, you calculated the probability given fixed φ_{0} and φ_{1}. If done correctly, your derivations gave a result depending only on φ_{0}. Draw a plot of $\operatorname{Pr}\left(y \mid \varphi_{0}\right)$ for $\varphi_{0}=0, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi$. Calculate and draw a plot of the total probability $\operatorname{Pr}(y)$ considering that φ_{0} is uniformly distributed on $[0,2 \pi]$.

