
Exercise Set 7: Solution
Quantum Computation

Exercise 1 Subgroups of Z/MZ

(a) If r does not divide M , then n · r (mod M) is not a multiple of r when n reaches the
first value such that n · r > M , so H is not a subgroup of G in this case.

On the contrary, if r divides M , then any sum modulo M of any two elements of H
remains a multiple of r, i.e., an element of H. Also, every element n in H admits an
inverse M − n which also belongs to H, so H is a subgroup of G in this case.

(b) The number of divisors of M corresponds to the number of different ways to choose
prime factors among those available. The number of times p1 can be chosen is a number
between 0 and n1, and similarly for the other prime factors, so the total number of
choices, which is also equal to the total number of divisors of M , is given by

(n1 + 1) · (n2 + 1) · · · (nk + 1)

Exercise 2 Upper bound on the period of f(x) = ax (mod N)

(a) To check that G is a group, we need to check:
- The multiplication modulo N is an internal operation in G: indeed, if gcd(n,N) = 1
and gcd(m,N) = 1, then it also holds that gcd(n ·m (mod N), N) = 1.
- It is associative: this follows form the associativity of the multiplication modulo N .
- The neutral element 1 belongs to G: clear.
- Each element in G has an inverse in G: indeed, if gcd(n,N) = 1, then Bézout’s theorem
implies there exist integers x, y such that xn + yN = 1, i.e., xn (mod N) = 1, which is
exactly saying that x is the inverse of n modulo N , and the same equation also implies
that gcd(x,N) = 1, so x also belongs to G.

(b) The number of elements in G is equal to

(p− 1) · (q − 1) = pq − p− q + 1 = N − p− q + 1 = (N − 1)− (p− 1)− (q − 1)

Indeed, the set G contains all the elements between 1 and N − 1, except the q − 1
multiples of p and the p− 1 multiples of q.

(c) H is a subgroup of G because:
- For any two elements a` and am in H, it is clear that a` · am (mod N) = a`+m (mod N)
also belongs to H (note that if ` + m ≥ k, then a`+m (mod N) = a`+m−k (mod N)).
- Also, each element a` in H has an inverse ak−` which belongs also to H.
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(d) Lagrange’s theorem states that |H| = k divides |G| = (p− 1) (q − 1). But by definition,
k is the smallest integer such that ak(mod N) = 1, which is nothing but the period of
the function f defined as f(x) = ax (mod N). This implies inequality (1).

Remark: The above also implies that if gcd(a,N) = 1, then a(p−1) (q−1) (mod N) = 1,
which is known as (a particular instance of) Euler’s theorem.

Exercise 3 One-dimensional linear subspaces of G = {0, 1, . . . , q − 1}2

(a) Every span(g), where g is a non-zero element of G, is a one-dimensional linear subspace
of G. There are 52 = 25 different elements in G, among which 24 are non-zero. But
not all of them span a different subspace: each subspace has exactly 5 elements, so 4
non-zero elements, and because the set {0, 1, 2, 3, 4} equipped with the addition modulo
5 is a field (because 5 is a prime number), we obtain that groups of 4 elements span the
same subspace, so the total number of different subspaces is equal to 24/4 = 6. Those
are the following (found by exhaustive search):

H0 = span{(0, 1)} H1 = span{(1, 1)} H2 = span{(2, 1)}
H3 = span{(3, 1)} H4 = span{(4, 1)} H5 = span{(1, 0)}

(b) The equivalence classes of H are: H, H + (0, 1), H + (0, 2), H + (0, 3), H + (0, 4)
(where “+” denotes here the addition modulo 5).

(c) As 4 is not a prime number, {0, 1, 2, 3} equipped with the addition and multiplication
modulo 4 is not a field (because 2 has no multiplicative inverse), so the reasoning of part
(a) does not hold, and there are actually in this case more subspaces than expected (9
in total instead of (42 − 1)/3 = 5). Here they are:

H0 = span{(0, 1)} H1 = span{(1, 1)} H2 = span{(2, 1)}
H3 = span{(3, 1)} H4 = span{(1, 0)} H5 = span{(0, 2)}
H8 = span{(2, 2)} H7 = span{(1, 2)} H8 = span{(2, 0)}

Note that the 4 extra subspaces are all spanned by a vector with at least one component
equal to 2.
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