Exercise Set 7: Solution
Quantum Computation

Exercise 1 Subgroups of Z/MZ

(a)

If r does not divide M, then n - r (mod M) is not a multiple of » when n reaches the
first value such that n-r > M, so H is not a subgroup of G in this case.

On the contrary, if r divides M, then any sum modulo M of any two elements of H
remains a multiple of r, i.e., an element of H. Also, every element n in H admits an
inverse M — n which also belongs to H, so H is a subgroup of GG in this case.

The number of divisors of M corresponds to the number of different ways to choose
prime factors among those available. The number of times p; can be chosen is a number
between 0 and ny, and similarly for the other prime factors, so the total number of
choices, which is also equal to the total number of divisors of M, is given by

(np+1)-(no+1)--(npg+1)

Exercise 2 Upper bound on the period of f(z) = a® (mod N)

(a)

()

To check that G is a group, we need to check:

- The multiplication modulo N is an internal operation in G: indeed, if ged(n, N) =1
and ged(m, N) = 1, then it also holds that ged(n - m (mod N), N) = 1.

- It is associative: this follows form the associativity of the multiplication modulo N.

- The neutral element 1 belongs to G: clear.

- Each element in G has an inverse in G: indeed, if ged(n, N) = 1, then Bézout’s theorem
implies there exist integers x,y such that xn + yN = 1, i.e., zn (mod N) = 1, which is
exactly saying that x is the inverse of n modulo N, and the same equation also implies
that ged(z, N) = 1, so z also belongs to G.

The number of elements in G is equal to
(p—1) -(¢=1)=pg—p—q+1=N—-p—q+1=(N-1)—(p—1)—(¢—1)

Indeed, the set G contains all the elements between 1 and N — 1, except the ¢ — 1
multiples of p and the p — 1 multiples of q.

H is a subgroup of G because:

- For any two elements a‘ and @™ in H, it is clear that a‘-a™ (mod N) = a**™ (mod N))
also belongs to H (note that if £ 4+ m > k, then a*™™ (mod N) = a**™* (mod N)).

- Also, each element a’ in H has an inverse a*~¢ which belongs also to H.
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(d)

Lagrange’s theorem states that |H| = k divides |G| = (p — 1) (¢ — 1). But by definition,
k is the smallest integer such that a*(mod N) = 1, which is nothing but the period of
the function f defined as f(z) = a® (mod N). This implies inequality (1).

Remark: The above also implies that if gcd(a, N) = 1, then a®~ V@1 (mod N) = 1,

which is known as (a particular instance of) Euler’s theorem.

Exercise 3 One-dimensional linear subspaces of G = {0,1,...,q—1}2

(a)

Every span(g), where g is a non-zero element of G, is a one-dimensional linear subspace
of G. There are 5% = 25 different elements in GG, among which 24 are non-zero. But
not all of them span a different subspace: each subspace has exactly 5 elements, so 4
non-zero elements, and because the set {0,1,2,3,4} equipped with the addition modulo
5 is a field (because 5 is a prime number), we obtain that groups of 4 elements span the
same subspace, so the total number of different subspaces is equal to 24/4 = 6. Those
are the following (found by exhaustive search):

Hy =span{(0,1)} H; =span{(1,1)} Hy =span{(2,1)}
Hs; =span{(3,1)} Hy=span{(4,1)} Hs = span{(1,0)}

The equivalence classes of H are: H, H+ (0,1), H +(0,2), H + (0,3), H + (0,4)
(where “+” denotes here the addition modulo 5).

As 4 is not a prime number, {0,1,2,3} equipped with the addition and multiplication
modulo 4 is not a field (because 2 has no multiplicative inverse), so the reasoning of part
(a) does not hold, and there are actually in this case more subspaces than expected (9
in total instead of (4> — 1)/3 = 5). Here they are:

Hy =span{(0,1)} H; =span{(1,1)} Hy =span{(2,1)}
H; =span{(3,1)} Hy =span{(1,0)} Hs = span{(0,2)}
Hg =span{(2,2)} H;=span{(1,2)} Hs =span{(2,0)}

Note that the 4 extra subspaces are all spanned by a vector with at least one component
equal to 2.



