Exercise 1 Subgroups of $\mathbb{Z} / M \mathbb{Z}$

(a) If r does not divide M, then $n \cdot r(\bmod M)$ is not a multiple of r when n reaches the first value such that $n \cdot r>M$, so H is not a subgroup of G in this case.

On the contrary, if r divides M, then any sum modulo M of any two elements of H remains a multiple of r, i.e., an element of H. Also, every element n in H admits an inverse $M-n$ which also belongs to H, so H is a subgroup of G in this case.
(b) The number of divisors of M corresponds to the number of different ways to choose prime factors among those available. The number of times p_{1} can be chosen is a number between 0 and n_{1}, and similarly for the other prime factors, so the total number of choices, which is also equal to the total number of divisors of M, is given by

$$
\left(n_{1}+1\right) \cdot\left(n_{2}+1\right) \cdots\left(n_{k}+1\right)
$$

Exercise 2 Upper bound on the period of $f(x)=a^{x}(\bmod N)$
(a) To check that G is a group, we need to check:

- The multiplication modulo N is an internal operation in G : indeed, if $\operatorname{gcd}(n, N)=1$ and $\operatorname{gcd}(m, N)=1$, then it also holds that $\operatorname{gcd}(n \cdot m(\bmod N), N)=1$.
- It is associative: this follows form the associativity of the multiplication modulo N.
- The neutral element 1 belongs to G : clear.
- Each element in G has an inverse in G : indeed, if $\operatorname{gcd}(n, N)=1$, then Bézout's theorem implies there exist integers x, y such that $x n+y N=1$, i.e., $x n(\bmod N)=1$, which is exactly saying that x is the inverse of n modulo N, and the same equation also implies that $\operatorname{gcd}(x, N)=1$, so x also belongs to G.
(b) The number of elements in G is equal to

$$
(p-1) \cdot(q-1)=p q-p-q+1=N-p-q+1=(N-1)-(p-1)-(q-1)
$$

Indeed, the set G contains all the elements between 1 and $N-1$, except the $q-1$ multiples of p and the $p-1$ multiples of q.
(c) H is a subgroup of G because:

- For any two elements a^{ℓ} and a^{m} in H, it is clear that $a^{\ell} \cdot a^{m}(\bmod N)=a^{\ell+m}(\bmod N)$ also belongs to $H\left(\right.$ note that if $\ell+m \geq k$, then $\left.a^{\ell+m}(\bmod N)=a^{\ell+m-k}(\bmod N)\right)$.
- Also, each element a^{ℓ} in H has an inverse $a^{k-\ell}$ which belongs also to H.
(d) Lagrange's theorem states that $|H|=k$ divides $|G|=(p-1)(q-1)$. But by definition, k is the smallest integer such that $a^{k}(\bmod N)=1$, which is nothing but the period of the function f defined as $f(x)=a^{x}(\bmod N)$. This implies inequality (1).

Remark: The above also implies that if $\operatorname{gcd}(a, N)=1$, then $a^{(p-1)(q-1)}(\bmod N)=1$, which is known as (a particular instance of) Euler's theorem.

Exercise 3 One-dimensional linear subspaces of $G=\{0,1, \ldots, q-1\}^{2}$
(a) Every $\operatorname{span}(g)$, where g is a non-zero element of G, is a one-dimensional linear subspace of G. There are $5^{2}=25$ different elements in G, among which 24 are non-zero. But not all of them span a different subspace: each subspace has exactly 5 elements, so 4 non-zero elements, and because the set $\{0,1,2,3,4\}$ equipped with the addition modulo 5 is a field (because 5 is a prime number), we obtain that groups of 4 elements span the same subspace, so the total number of different subspaces is equal to $24 / 4=6$. Those are the following (found by exhaustive search):

$$
\begin{array}{lll}
H_{0}=\operatorname{span}\{(0,1)\} & H_{1}=\operatorname{span}\{(1,1)\} & H_{2}=\operatorname{span}\{(2,1)\} \\
H_{3}=\operatorname{span}\{(3,1)\} & H_{4}=\operatorname{span}\{(4,1)\} & H_{5}=\operatorname{span}\{(1,0)\}
\end{array}
$$

(b) The equivalence classes of H are: $H, H+(0,1), H+(0,2), H+(0,3), H+(0,4)$ (where " + " denotes here the addition modulo 5).
(c) As 4 is not a prime number, $\{0,1,2,3\}$ equipped with the addition and multiplication modulo 4 is not a field (because 2 has no multiplicative inverse), so the reasoning of part (a) does not hold, and there are actually in this case more subspaces than expected (9 in total instead of $\left.\left(4^{2}-1\right) / 3=5\right)$. Here they are:

$$
\begin{aligned}
H_{0} & =\operatorname{span}\{(0,1)\} & H_{1}=\operatorname{span}\{(1,1)\} & H_{2}=\operatorname{span}\{(2,1)\} \\
H_{3} & =\operatorname{span}\{(3,1)\} & H_{4}=\operatorname{span}\{(1,0)\} & H_{5}=\operatorname{span}\{(0,2)\} \\
H_{8} & =\operatorname{span}\{(2,2)\} & H_{7}=\operatorname{span}\{(1,2)\} & H_{8}=\operatorname{span}\{(2,0)\}
\end{aligned}
$$

Note that the 4 extra subspaces are all spanned by a vector with at least one component equal to 2 .

