Exercise 1 Subgroups of $\mathbb{Z}/M\mathbb{Z}$

Let $M \ge 1$ be an integer and $G = \mathbb{Z}/M\mathbb{Z} = \{0, 1, 2, \dots, M-1\}$ be the group equipped with the addition modulo M.

(a) Show that for $r \ge 1$ fixed (and also $r \le M$), the set

$$H = \{n \cdot r \ : \ 0 \le n \le \frac{M-1}{r}\}$$

is a subgroup of G if and only if r divides M.

(b) Let us assume that the prime factorization of M is given by

$$M = p_1^{n_1} \cdot p_2^{n_2} \cdots p_k^{n_k}$$

where p_1, \ldots, p_k are (distinct) primes and n_1, \ldots, n_k are integers. What is the number of distinct divisors of M (which is equal to the number of distinct subgroups of G)?

Exercise 2 Upper bound on the period of $f(x) = a^x \pmod{N}$

Let us consider an integer $N = p \cdot q$, where p and q are distinct primes. Let $1 \le a \le N-1$ be another integer such that gcd(a, N) = 1. The aim of the present exercise is to show that in this case, the period r of the function $f : \mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/N\mathbb{Z}$ defined as $f(x) = a^x \pmod{N}$ satisfies the inequality

$$r \le (p-1)(q-1) \tag{1}$$

- (a) Let $G = \{1 \le n \le N 1 : gcd(n, N) = 1\}$. Show that this set, equipped with the *multiplication modulo* N, is a group.
- (b) Under the assumption that $N = p \cdot q$, where p and q are distinct primes, what is the number of elements in G?
- (c) Let $a \in G$ and consider the set

 $H = \{1, a, a^2 \pmod{N}, a^3 \pmod{N}, \dots, a^{k-1} \pmod{N} \}$

where $k \ge 1$ is the smallest integer such that $a^k \pmod{N} = 1$. Show that H is a subgroup of G.

(d) Use then Lagrange's theorem to conclude that inequality (1) holds.

Exercise 3 One-dimensional linear subspaces of $G = \{0, 1, \dots, q-1\}^2$

(a) Let us first consider the 2-dimensional vector space $G = \{0, 1, 2, 3, 4\}^2$, equipped with the addition modulo 5 (e.g., if x = (2, 3) and y = (1, 4), then x + y = (3, 2)). Describe all the one-dimensional linear subspaces H of G.

Hint: You may first ask yourself how many exist?

- (b) Let $H = \text{span}\{(1,1)\}$. Describe the equivalence cases of H. (Again, how many exist?)
- (c) Consider now $G = \{0, 1, 2, 3\}^2$, equipped with the addition modulo 4. Describe all the one-dimensional linear subspaces H of G.