Exercise 1 Subgroups of $\mathbb{Z} / M \mathbb{Z}$

Let $M \geq 1$ be an integer and $G=\mathbb{Z} / M \mathbb{Z}=\{0,1,2, \ldots, M-1\}$ be the group equipped with the addition modulo M.
(a) Show that for $r \geq 1$ fixed (and also $r \leq M$), the set

$$
H=\left\{n \cdot r: 0 \leq n \leq \frac{M-1}{r}\right\}
$$

is a subgroup of G if and only if r divides M.
(b) Let us assume that the prime factorization of M is given by

$$
M=p_{1}^{n_{1}} \cdot p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}
$$

where p_{1}, \ldots, p_{k} are (distinct) primes and n_{1}, \ldots, n_{k} are integers. What is the number of distinct divisors of M (which is equal to the number of distinct subgroups of G)?

Exercise 2 Upper bound on the period of $f(x)=a^{x}(\bmod N)$
Let us consider an integer $N=p \cdot q$, where p and q are distinct primes. Let $1 \leq a \leq N-1$ be another integer such that $\operatorname{gcd}(a, N)=1$. The aim of the present exercise is to show that in this case, the period r of the function $f: \mathbb{Z} / N \mathbb{Z} \rightarrow \mathbb{Z} / N \mathbb{Z}$ defined as $f(x)=a^{x}(\bmod N)$ satisfies the inequality

$$
\begin{equation*}
r \leq(p-1)(q-1) \tag{1}
\end{equation*}
$$

(a) Let $G=\{1 \leq n \leq N-1: \operatorname{gcd}(n, N)=1\}$. Show that this set, equipped with the multiplication modulo N, is a group.
(b) Under the assumption that $N=p \cdot q$, where p and q are distinct primes, what is the number of elements in G ?
(c) Let $a \in G$ and consider the set

$$
H=\left\{1, a, a^{2}(\bmod N), a^{3}(\bmod N), \ldots, a^{k-1}(\bmod N)\right\}
$$

where $k \geq 1$ is the smallest integer such that $a^{k}(\bmod N)=1$. Show that H is a subgroup of G.
(d) Use then Lagrange's theorem to conclude that inequality (1) holds.

Exercise 3 One-dimensional linear subspaces of $G=\{0,1, \ldots, q-1\}^{2}$
(a) Let us first consider the 2-dimensional vector space $G=\{0,1,2,3,4\}^{2}$, equipped with the addition modulo 5 (e.g., if $x=(2,3)$ and $y=(1,4)$, then $x+y=(3,2))$. Describe all the one-dimensional linear subspaces H of G.
Hint: You may first ask yourself how many exist?
(b) Let $H=\operatorname{span}\{(1,1)\}$. Describe the equivalence casses of H. (Again, how many exist?)
(c) Consider now $G=\{0,1,2,3\}^{2}$, equipped with the addition modulo 4. Describe all the one-dimensional linear subspaces H of G.

