
Quantum computation : lecture -

Groups :

· finite groups , subgroups , equivalence classes
· Lagrange's theorem

Factoring :

· connection with the hidden subgrap
problem and classical algorithm

6



Finite
group

finite set G = E91 , 92, ..., gu) equipped with
internal operation 9 , 921 gigz Sit.

1) (g .g) .g = q
- (gig=) Eg,gig"EG associativity

2) JeeG sr. ge = e . g = g Uge6 neutral el.

3) Vge G , 7g"EG s.

r
. g .g = g".g =e inverse

On top of that , we say that 6 is abelian

if g .g = gig Vg ,ge 6.



Subgrap
= Set 4 tHCG s! if h,

hel
,
then h .h'et

and if hel
,
then he H

From this definition,
it follows thatH is a group,

contains the neutral element e
,
and the

associativity law holds inside H.

NB : H = Ee3 & H = 6 are always subgroups of 6



Equivalence classes of a subgramp HCG

Eg = Eg .h : heH} = set reachable from an

element of acting by all possible elements of H:

G
g -h g -42

.
->o

...

If 6 is abelian
,
when Eg = Eh .g : beH]



Fundamental property

If gtG in G , then either Eg-Eg or EglEg- =&

This is a direct consequence of Lagrange's the :

(i) Let g ,ge 6 ; then either Eg= Eg or EgrEg=d

(ii)The number of equivalence classes of H

is equal to A ,

i

.
e
. IH) divides 16..



Notation : The set of equivalence classes ofH
is also denoted as 6/4 (the quaient group

(so observe that 16/H) = 161/1H1)

Proof of Lagrange's th :

(i) Let g ,q'-> 6 . If EglEg - =0 ,
there is

nothing to prove ; assume therefore g E EgrEg
By def,Th,

helt sit. g. h = gih



So g= g.li)"E Eg ; i
.

e
. Eg. CE 3

Likewise
, gEngiAh" -Eg ; i

.

e
. EgCE

#(i)

(ii) (Eg) = /H) Kg because the mapping
H < Eg is bijectiveEh - gib

So 16/1 . 141 = 161
#(ii)

(thanks to part i)



Here are same"pictures
U
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NB : The equivalence classes of H form a

partition of G

· H = subgroup ? Check first that IH/ divides (6) :



Examples
a) 6 =(20,23",) set of length n binary vectors

equipped with addition mod 2

. H= [0 ,
a)

,
of a e6 : IH1 = 2

,
16/1 = 2

+

Ex = Eye 6 : y = xa)
Ex Ez = 0 iff zGx + a

· H = k-dim subspace of 6 : 11 = 2"
,
10/12

"*



b) G = (2 ,
+) the set of integer numbers

equipped with the usual addition

H = r . I witha same posive integer

eq. classes : Eo = H
, Eq :EqtnrineR]

0 qt - 1

6/4 =/2 = Eo , e , ... ,
-13

,
19/4)= n

integers modulor



c) G = /M2 = 20 , 1. . . . , M -1)

H = E multiples ofr between o & R-13 ( fixed)

= subgram of 6 ifand only if r divides M

Note that is this case
,
G/H is isomorphic

to /2



Simon's algorithm seen last time can

be easily generalized to solve efficiently
the hidden subgroup problem :

finite
Let 6 beagroup ,

I be a subgroup of 6

and f : G -> 6/4 be st- f(g) = f(gz)
if and only if G:92' E H. The aim is then

to recoverH with as few calls as possible
to the orade f



A new problem
Let f:- be a function such that

Fre * With f(x) = floctr! Vie

(and assume thatr is the smallest value such

that the above relation holds : r = period of f)

This is again a hidden subgrap problem,
with the slight difference that 6= E is infinite



For the above problem to be interesting,
we assume furthermore that :

i) ~ is very large (n 400 digit , e .g .)

ii) the equation f(x) = f(x+r) is "impossible"
to sale in polynomial time in U

Example

f(x) = a (modN)
,
where both a & N

have ordern digits .



We show belar how the resolution of the

above problem relates to the factoring pb.

As a reminder
,
the factoring problem is

to find , given a (largel integer N , a

number 21 9 IN - 1 such that aIN (read

this as "a divides N")
. By repeatedly solving

this pb ,
one finds the prime factor decomposition

of N.



Here is the algorithm for factoring :

1
.

Choose 211N-1 unif .

at randa

and compute digcd (a, N) (this

requires O ((logirl) runtime with Endid's algo)
2 . If d > 1 (which happens with law prob.),
then a=d solves the factoring pb.
Assume therefore d=1 in the following.



3. Compute the smallest value of re E
*

such that a"(modN) =
1.

[NB : This is the part where shar's algorithm
is going to help us .]

4
. If r is odd, declare failure and
restart the algorithm in 1

.



5. Ifa is even
,
then observe that

a - 1 = (a - 1) . (a
-

+ 1)
- --

:=d
-

: =dx

Also by part 3 , a-1 = KN for same Kee

So

N / a "- 1 = d
-
d+

Then three different things can happen :



a) Either N(d_=a -1
,
but this is actu

ally impossible , as i is by assumption
the smallest value st. N/a-1.

b) or N/d+ =a * + 1 ; in this case, declare

failure and restart the algorithm in 1 .

c) or N shares nontrivial prime factors
with bath d. and d+=> success !



Rabin & Miller shared in 1974 that

the success probability of this algorithm
is greater than or equal to 3/4 .

So by repeating the algo T times
,
one( S

can obtain an arbitrarily small error prob.
The only weakness of the algorithm
is the resolution in part 3...



Classically, for a & N with order n digits,&

finding the smallest value of >e S
.

U
.

a "(modN) = 1

requires order exp((n (logn)23)
runtime with the best known algorithm
=> runtime superpolynomial in n .



As we shall see in the next lectures,

Shor's algorithm finds in 01) rentine
the smallest value of 121 st.

a
x

= a
x+

r(modN) Exe

i
.

?
. 1 = a "(modN).

This opens therefore the possibility of a

polynomial time resolution of the factoring pb.


