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What you will learn in this class
• What is Evolutionary Robotics used for

• Genetic encodings of neural controllers

• Set up, carry out, and analyze a robotic experiment

• Evolution of vision-based neuro-controllers

• Analysis of evolved spiking neural networks

• Feature detection and active vision for neural controllers

• Comparing fitness functions: The Fitness Design Space

• Evolutionary control vs Reinforcement Learning



Evolutionary Robotics is the automated generation of robot control systems* and morphologies by 
means of artificial evolution (Nolfi & Floreano, MIT Press, 2000)

Evolutionary Robotics
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*The control systems are often neural networks

Two motivations

Engineering: a tool to investigate the space of possible control 
strategies and body design

Biology: A synthetic (as opposed to analytic) approach to the study of 
mechanisms of adaptive behavior in machines and animals (Braitenberg, 
1984)



1. Connection Weights
a. pre-defined neural network architecture
b. binary or real-valued representation of connection weights
c. fixed-length genotype

2. Learning Rules
a. pre-defined neural network architecture
b. Binary or real-valued representation of learning rule 
c. Fixed-length genotype

3. Topology
a. Neural network architecture created at birth
b. Genotype encodes the parameters of a generative algorithm (program, L-System, neural 

network)
c. Fixed-length or variable-length genotype
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Genome can encode



Evolution of connection weights

1 synapse

synapse sign
synapse strength

Fitness function is a measure of the robot behavior

Can be combined with neural network learning:
- learning starts from genetically encoded weights
- fitness measures performance of network after training
- learned weights are not written back into genome
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Binary encoding



Fitness = V x Dv x (1-s)

motors

sensors

Dt=300ms

Collision-free Navigation
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Methodology
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The average and best population fitness are typical measures of performance.

Direction

Speed = 60%

Evolved robots always have a preferential direction of motion and speed.

Results
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Fitness = V x (1-s)
motors

sensors

Dt=300ms

Let us now put the robot in a more complex environment and make the fitness function even simpler. 
The robot is equipped with a battery that lasts only 20 s and there is a battery charger in the arena.

Homing for Battery Charge
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Best evolved robots go to recharge with only 10% residual energy. Why and how?

Activity of an internal neuron

Machine Neuro-Ethology
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It is difficult to evolve from scratch large and complex robots because of:
- hardware robustness
- bootstrap problem: zero-fitness of all individuals of the initial generation

Khepera
robot

Koala
robot

Evolution of complex robots
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Fitness=V x Dv x (1-s)
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Incremental evolution (a.k.a robot shaping)
simulation real robot (Khepera) different robot (Koala)

Fitness=V x Dv x (1-s) Fitness=V x Dv x (1-s)



EPFL Microrobot 
• 4 proximity sensors
• 2 Swatch motors
• 10 hours autonomy
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Microcontroller PIC16F84, (Microchip, 2001)
1024 words of program memory
68 bytes of RAM
64 bytes of EEPROM

Evolution of spiking neural controllers

spike

refractory period

integration
+ leakage

x1

x2

x3

x4

Binary events



Each neuron has a binary gene: projection sign and pattern of incoming connections
Genotype of individual = concatenation of 8 neuronal genes

Weight of existing incoming connection = 1 (no learning)
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Representation and encoding of neural architecture



?
6 individuals
(genome + fitness)

Replace if better than worst in population

TEST

Mutation

1 bit SIGN
1 bit NCONN
1 bit ICONN
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Steady-state evolutionary algorithm



Steady-state evolution
Fitness = V x Dv x (1-s)

Forward navigation with obstacle avoidance

• bias: P
• IR Right:Q
• IR Left: P
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• 5 x 5 room, random size stripes
• Fitness = forward motion (anemometer)
• 2 trials, 2 minutes each
• Evolution + network activation on PC
• Sensory pre-processing on microcontroller

Vision-based flight of a blimp



After 50 generations on the real blimp
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Evolution is opportunistic!
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After 30 generations

Fitness proportional to amount of forward 
translation over 2 mins

Vision-based navigation with spiking neurons
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1 2 3 4 5 6 7 8 9 10
9 445 453 450 330 40 129 363 0 452

Neuron #

spikes/s

- Removing any single neuron (except # 9) decreases the navigation performance
- Removing any pair of neurons decreases even further navigation performance
- Removing neurons 1, 5, 6 has no effect on performance
we infer that evolved neurons use time difference of incoming signals, not only total signal intensity

Firing rate or firing time?





Center-Surround Oriented Edges

Hebb plasticityProcess whereby visual neurons become
sensitive to certain sensory patterns (features) 
during the developmental process (Hubel & 
Wiesel, 1959)
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Visual feature detection



Process of selecting by motor actions 
sensory patterns (features) that make
discrimination easier (Bajcsy, 1988)

Yarbus, 1967
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Active vision



shape discrimination
robot control

car driving

retina movement
zooming factor
filter type

Neural architecture for active vision



Output of vision system is movement 
of camera (pan/tilt) and of robot 
wheels (mot1/mot2). Filter as before.

Goal: Evolve collision-free navigation using only vision information from a pan/tilt camera.

Robot navigation with active vision architecture
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Fitness = percentage of covered 
distance D in R races on M circuits 
(limited time for each race).

Active Vision for Car Driving
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Active Vision for bipedal locomotion





functional behavioral

internal

externalexplicit

implicit

engineering

biology
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Fitness design space: comparing fitness functions



Reinforcement Learning - Evolutionary Computation

See also https://openai.com/blog/evolution-strategies/

Reinforcement Learning Evolutionary Computation
- Definition of Reinforcement Policy - Definition of Fitness Function

- Gradient descent/ascent + No need of gradient

- Lots of hyperparameters and ”tricks” + Comparatively less hyperparameters

+ Efficient search of state-action space - Random search after selection (but CMA-ES)

- Difficult in long rollouts without reward + No problem with rollout length

- Operates only on weights of neural network + Operates on weights, morphologies, learning

- Requires many rollouts - Requires many rollouts

+ Has strong mathematical foundations - Some algorithms are rather empirical

Two methods for learning behavioral policies from rewards


